DeFooocus / modules /censor.py
shmuel85's picture
Upload folder using huggingface_hub
10a5730 verified
raw
history blame
1.77 kB
# modified version of https://github.com/AUTOMATIC1111/stable-diffusion-webui-nsfw-censor/blob/master/scripts/censor.py
import numpy as np
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from transformers import AutoFeatureExtractor
from PIL import Image
import modules.config
safety_model_id = "CompVis/stable-diffusion-safety-checker"
safety_feature_extractor = None
safety_checker = None
def numpy_to_pil(image):
image = (image * 255).round().astype("uint8")
pil_image = Image.fromarray(image)
return pil_image
# check and replace nsfw content
def check_safety(x_image):
global safety_feature_extractor, safety_checker
if safety_feature_extractor is None:
safety_feature_extractor = AutoFeatureExtractor.from_pretrained(safety_model_id, cache_dir=modules.config.path_safety_checker_models)
safety_checker = StableDiffusionSafetyChecker.from_pretrained(safety_model_id, cache_dir=modules.config.path_safety_checker_models)
safety_checker_input = safety_feature_extractor(numpy_to_pil(x_image), return_tensors="pt")
x_checked_image, has_nsfw_concept = safety_checker(images=x_image, clip_input=safety_checker_input.pixel_values)
return x_checked_image, has_nsfw_concept
def censor_single(x):
x_checked_image, has_nsfw_concept = check_safety(x)
# replace image with black pixels, keep dimensions
# workaround due to different numpy / pytorch image matrix format
if has_nsfw_concept[0]:
imageshape = x_checked_image.shape
x_checked_image = np.zeros((imageshape[0], imageshape[1], 3), dtype = np.uint8)
return x_checked_image
def censor_batch(images):
images = [censor_single(image) for image in images]
return images