# modified version of https://github.com/AUTOMATIC1111/stable-diffusion-webui-nsfw-censor/blob/master/scripts/censor.py import numpy as np from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from transformers import AutoFeatureExtractor from PIL import Image import modules.config safety_model_id = "CompVis/stable-diffusion-safety-checker" safety_feature_extractor = None safety_checker = None def numpy_to_pil(image): image = (image * 255).round().astype("uint8") pil_image = Image.fromarray(image) return pil_image # check and replace nsfw content def check_safety(x_image): global safety_feature_extractor, safety_checker if safety_feature_extractor is None: safety_feature_extractor = AutoFeatureExtractor.from_pretrained(safety_model_id, cache_dir=modules.config.path_safety_checker_models) safety_checker = StableDiffusionSafetyChecker.from_pretrained(safety_model_id, cache_dir=modules.config.path_safety_checker_models) safety_checker_input = safety_feature_extractor(numpy_to_pil(x_image), return_tensors="pt") x_checked_image, has_nsfw_concept = safety_checker(images=x_image, clip_input=safety_checker_input.pixel_values) return x_checked_image, has_nsfw_concept def censor_single(x): x_checked_image, has_nsfw_concept = check_safety(x) # replace image with black pixels, keep dimensions # workaround due to different numpy / pytorch image matrix format if has_nsfw_concept[0]: imageshape = x_checked_image.shape x_checked_image = np.zeros((imageshape[0], imageshape[1], 3), dtype = np.uint8) return x_checked_image def censor_batch(images): images = [censor_single(image) for image in images] return images