shorecode commited on
Commit
59203cf
·
verified ·
1 Parent(s): 5fe31e8

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -6
app.py CHANGED
@@ -20,9 +20,9 @@ lora_config = LoraConfig(
20
  lora_dropout=0.1, # Dropout for LoRA layers
21
  bias="none" # Bias handling
22
  )
23
- model = AutoModelForSeq2SeqLM.from_pretrained('google/t5-efficient-tiny-nh8', num_labels=2, force_download=True)
24
- model = get_peft_model(model, lora_config)
25
- model.gradient_checkpointing_enable()
26
 
27
  @spaces.GPU(duration=120)
28
  def fine_tune_model(model, dataset_name, hub_id, api_key, num_epochs, batch_size, lr, grad):
@@ -53,8 +53,8 @@ def fine_tune_model(model, dataset_name, hub_id, api_key, num_epochs, batch_size
53
  per_device_eval_batch_size=int(batch_size),
54
  num_train_epochs=int(num_epochs),
55
  weight_decay=0.01,
56
- gradient_accumulation_steps=int(grad),
57
- max_grad_norm = 1.0,
58
  load_best_model_at_end=True,
59
  metric_for_best_model="accuracy",
60
  greater_is_better=True,
@@ -84,7 +84,6 @@ def fine_tune_model(model, dataset_name, hub_id, api_key, num_epochs, batch_size
84
  train_dataset=tokenized_train_dataset,
85
  eval_dataset=tokenized_test_dataset,
86
  compute_metrics=compute_metrics,
87
- #callbacks=[LoggingCallback()],
88
  )
89
  except:
90
  # Load the dataset
 
20
  lora_dropout=0.1, # Dropout for LoRA layers
21
  bias="none" # Bias handling
22
  )
23
+ model = AutoModelForSeq2SeqLM.from_pretrained('google/t5-efficient-tiny', num_labels=2, force_download=True)
24
+ #model = get_peft_model(model, lora_config)
25
+ #model.gradient_checkpointing_enable()
26
 
27
  @spaces.GPU(duration=120)
28
  def fine_tune_model(model, dataset_name, hub_id, api_key, num_epochs, batch_size, lr, grad):
 
53
  per_device_eval_batch_size=int(batch_size),
54
  num_train_epochs=int(num_epochs),
55
  weight_decay=0.01,
56
+ #gradient_accumulation_steps=int(grad),
57
+ #max_grad_norm = 1.0,
58
  load_best_model_at_end=True,
59
  metric_for_best_model="accuracy",
60
  greater_is_better=True,
 
84
  train_dataset=tokenized_train_dataset,
85
  eval_dataset=tokenized_test_dataset,
86
  compute_metrics=compute_metrics,
 
87
  )
88
  except:
89
  # Load the dataset