shorecode commited on
Commit
7e55f18
·
verified ·
1 Parent(s): 1c29374

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +130 -57
  2. requirements.txt +8 -1
app.py CHANGED
@@ -1,64 +1,137 @@
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
 
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
 
26
- messages.append({"role": "user", "content": message})
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
 
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
-
62
-
63
- if __name__ == "__main__":
64
- demo.launch()
 
1
+ import spaces
2
  import gradio as gr
3
+ from transformers import Trainer, TrainingArguments, AutoTokenizer, AutoModelForSeq2SeqLM
4
+ from transformers import DataCollatorForSeq2Seq
5
+ from datasets import load_dataset, concatenate_datasets, load_from_disk
6
+ import traceback
7
 
 
 
 
 
8
 
9
+ import os
10
 
 
 
 
 
 
 
 
 
 
11
 
12
+ @spaces.GPU
13
+ def fine_tune_model(model_name, dataset_name, hub_id, api_key, num_epochs, batch_size, lr, grad):
14
+ try:
15
+ #login(api_key.strip())
16
+ # Load the model and tokenizer
17
+ model = AutoModelForSeq2SeqLM.from_pretrained('google/t5-efficient-tiny-nh8', num_labels=2)
18
+
19
+
20
+ # Set training arguments
21
+ training_args = TrainingArguments(
22
+ output_dir='/data/results',
23
+ eval_strategy="steps", # Change this to steps
24
+ save_strategy='steps',
25
+ learning_rate=lr*0.00001,
26
+ per_device_train_batch_size=int(batch_size),
27
+ per_device_eval_batch_size=int(batch_size),
28
+ num_train_epochs=int(num_epochs),
29
+ weight_decay=0.01,
30
+ gradient_accumulation_steps=int(grad),
31
+ max_grad_norm = 1.0,
32
+ load_best_model_at_end=True,
33
+ metric_for_best_model="accuracy",
34
+ greater_is_better=True,
35
+ logging_dir='/data/logs',
36
+ logging_steps=10,
37
+ #push_to_hub=True,
38
+ hub_model_id=hub_id.strip(),
39
+ fp16=True,
40
+ #lr_scheduler_type='cosine',
41
+ save_steps=100, # Save checkpoint every 500 steps
42
+ save_total_limit=3,
43
+ )
44
+ # Check if a checkpoint exists and load it
45
+ max_length = 128
46
+ # Load the dataset
47
+ dataset = load_dataset(dataset_name.strip())
48
+ tokenizer = AutoTokenizer.from_pretrained('google/t5-efficient-tiny-nh8')
49
+ # Tokenize the dataset
50
+ def tokenize_function(examples):
51
+
52
+ # Assuming 'text' is the input and 'target' is the expected output
53
+ model_inputs = tokenizer(
54
+ examples['text'],
55
+ max_length=max_length, # Set to None for dynamic padding
56
+ padding=True, # Disable padding here, we will handle it later
57
+ truncation=True,
58
+ )
59
+
60
+ # Setup the decoder input IDs (shifted right)
61
+ labels = tokenizer(
62
+ examples['target'],
63
+ max_length=max_length, # Set to None for dynamic padding
64
+ padding=True, # Disable padding here, we will handle it later
65
+ truncation=True,
66
+ text_target=examples['target'] # Use text_target for target text
67
+ )
68
+
69
+ # Add labels to the model inputs
70
+ model_inputs["labels"] = labels["input_ids"]
71
+
72
+
73
+ tokenized_datasets = dataset.map(tokenize_function, batched=True)
74
+
75
+ tokenized_datasets['train'].save_to_disk(f'/data/{hub_id.strip()}_train_dataset')
76
+ tokenized_datasets['test'].save_to_disk(f'/data/{hub_id.strip()}_test_dataset')
77
+
78
+ # Create Trainer
79
+ trainer = Trainer(
80
+ model=model,
81
+ args=training_args,
82
+ train_dataset=tokenized_datasets['train'],
83
+ eval_dataset=tokenized_datasets['test'],
84
+ compute_metrics=compute_metrics,
85
+ #callbacks=[LoggingCallback()],
86
+ )
87
 
88
+ # Fine-tune the model
89
+ trainer.train()
90
+ trainer.push_to_hub(commit_message="Training complete!")
91
+ except Exception as e:
92
+ return f"An error occurred: {str(e)}, TB: {traceback.format_exc()}"
93
+ return 'DONE!'#model
94
+ '''
95
+ # Define Gradio interface
96
+ def predict(text):
97
+ model = AutoModelForSeq2SeqLM.from_pretrained(model_name.strip(), num_labels=2)
98
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
99
+ inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
100
+ outputs = model(inputs)
101
+ predictions = outputs.logits.argmax(dim=-1)
102
+ return predictions.item()
103
+ '''
104
+ # Create Gradio interface
105
+ try:
106
+ iface = gr.Interface(
107
+ fn=fine_tune_model,
108
+ inputs=[
109
+ gr.Textbox(label="Model Name (e.g., 'google/t5-efficient-tiny-nh8')"),
110
+ gr.Textbox(label="Dataset Name (e.g., 'imdb')"),
111
+ gr.Textbox(label="HF hub to push to after training"),
112
+ gr.Textbox(label="HF API token"),
113
+ gr.Slider(minimum=1, maximum=10, value=3, label="Number of Epochs", step=1),
114
+ gr.Slider(minimum=1, maximum=2000, value=1, label="Batch Size", step=1),
115
+ gr.Slider(minimum=1, maximum=1000, value=1, label="Learning Rate (e-5)", step=1),
116
+ gr.Slider(minimum=1, maximum=100, value=1, label="Gradient accumulation", step=1),
117
+ ],
118
+ outputs="text",
119
+ title="Fine-Tune Hugging Face Model",
120
+ description="This interface allows you to fine-tune a Hugging Face model on a specified dataset."
121
+ )
122
+ '''
123
+ iface = gr.Interface(
124
+ fn=predict,
125
+ inputs=[
126
+ gr.Textbox(label="Query"),
127
+ ],
128
+ outputs="text",
129
+ title="Fine-Tune Hugging Face Model",
130
+ description="This interface allows you to test a fine-tune Hugging Face model."
131
+ )
132
+ '''
133
+ # Launch the interface
134
+ iface.launch()
135
+ except Exception as e:
136
+ print(f"An error occurred: {str(e)}, TB: {traceback.format_exc()}")
137
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
requirements.txt CHANGED
@@ -1 +1,8 @@
1
- huggingface_hub==0.25.2
 
 
 
 
 
 
 
 
1
+ spaces
2
+ transformers
3
+ datasets
4
+ peft
5
+ huggingface_hub
6
+ scikit-learn
7
+ numpy
8
+ torch