Upload 2 files
Browse files- app.py +130 -57
- requirements.txt +8 -1
app.py
CHANGED
@@ -1,64 +1,137 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
-
from
|
|
|
|
|
|
|
3 |
|
4 |
-
"""
|
5 |
-
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
6 |
-
"""
|
7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
|
|
|
9 |
|
10 |
-
def respond(
|
11 |
-
message,
|
12 |
-
history: list[tuple[str, str]],
|
13 |
-
system_message,
|
14 |
-
max_tokens,
|
15 |
-
temperature,
|
16 |
-
top_p,
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
-
response = ""
|
29 |
-
|
30 |
-
for message in client.chat_completion(
|
31 |
-
messages,
|
32 |
-
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
-
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
-
|
42 |
-
|
43 |
-
"""
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
-
demo = gr.ChatInterface(
|
47 |
-
respond,
|
48 |
-
additional_inputs=[
|
49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
-
)
|
61 |
-
|
62 |
-
|
63 |
-
if __name__ == "__main__":
|
64 |
-
demo.launch()
|
|
|
1 |
+
import spaces
|
2 |
import gradio as gr
|
3 |
+
from transformers import Trainer, TrainingArguments, AutoTokenizer, AutoModelForSeq2SeqLM
|
4 |
+
from transformers import DataCollatorForSeq2Seq
|
5 |
+
from datasets import load_dataset, concatenate_datasets, load_from_disk
|
6 |
+
import traceback
|
7 |
|
|
|
|
|
|
|
|
|
8 |
|
9 |
+
import os
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
+
@spaces.GPU
|
13 |
+
def fine_tune_model(model_name, dataset_name, hub_id, api_key, num_epochs, batch_size, lr, grad):
|
14 |
+
try:
|
15 |
+
#login(api_key.strip())
|
16 |
+
# Load the model and tokenizer
|
17 |
+
model = AutoModelForSeq2SeqLM.from_pretrained('google/t5-efficient-tiny-nh8', num_labels=2)
|
18 |
+
|
19 |
+
|
20 |
+
# Set training arguments
|
21 |
+
training_args = TrainingArguments(
|
22 |
+
output_dir='/data/results',
|
23 |
+
eval_strategy="steps", # Change this to steps
|
24 |
+
save_strategy='steps',
|
25 |
+
learning_rate=lr*0.00001,
|
26 |
+
per_device_train_batch_size=int(batch_size),
|
27 |
+
per_device_eval_batch_size=int(batch_size),
|
28 |
+
num_train_epochs=int(num_epochs),
|
29 |
+
weight_decay=0.01,
|
30 |
+
gradient_accumulation_steps=int(grad),
|
31 |
+
max_grad_norm = 1.0,
|
32 |
+
load_best_model_at_end=True,
|
33 |
+
metric_for_best_model="accuracy",
|
34 |
+
greater_is_better=True,
|
35 |
+
logging_dir='/data/logs',
|
36 |
+
logging_steps=10,
|
37 |
+
#push_to_hub=True,
|
38 |
+
hub_model_id=hub_id.strip(),
|
39 |
+
fp16=True,
|
40 |
+
#lr_scheduler_type='cosine',
|
41 |
+
save_steps=100, # Save checkpoint every 500 steps
|
42 |
+
save_total_limit=3,
|
43 |
+
)
|
44 |
+
# Check if a checkpoint exists and load it
|
45 |
+
max_length = 128
|
46 |
+
# Load the dataset
|
47 |
+
dataset = load_dataset(dataset_name.strip())
|
48 |
+
tokenizer = AutoTokenizer.from_pretrained('google/t5-efficient-tiny-nh8')
|
49 |
+
# Tokenize the dataset
|
50 |
+
def tokenize_function(examples):
|
51 |
+
|
52 |
+
# Assuming 'text' is the input and 'target' is the expected output
|
53 |
+
model_inputs = tokenizer(
|
54 |
+
examples['text'],
|
55 |
+
max_length=max_length, # Set to None for dynamic padding
|
56 |
+
padding=True, # Disable padding here, we will handle it later
|
57 |
+
truncation=True,
|
58 |
+
)
|
59 |
+
|
60 |
+
# Setup the decoder input IDs (shifted right)
|
61 |
+
labels = tokenizer(
|
62 |
+
examples['target'],
|
63 |
+
max_length=max_length, # Set to None for dynamic padding
|
64 |
+
padding=True, # Disable padding here, we will handle it later
|
65 |
+
truncation=True,
|
66 |
+
text_target=examples['target'] # Use text_target for target text
|
67 |
+
)
|
68 |
+
|
69 |
+
# Add labels to the model inputs
|
70 |
+
model_inputs["labels"] = labels["input_ids"]
|
71 |
+
|
72 |
+
|
73 |
+
tokenized_datasets = dataset.map(tokenize_function, batched=True)
|
74 |
+
|
75 |
+
tokenized_datasets['train'].save_to_disk(f'/data/{hub_id.strip()}_train_dataset')
|
76 |
+
tokenized_datasets['test'].save_to_disk(f'/data/{hub_id.strip()}_test_dataset')
|
77 |
+
|
78 |
+
# Create Trainer
|
79 |
+
trainer = Trainer(
|
80 |
+
model=model,
|
81 |
+
args=training_args,
|
82 |
+
train_dataset=tokenized_datasets['train'],
|
83 |
+
eval_dataset=tokenized_datasets['test'],
|
84 |
+
compute_metrics=compute_metrics,
|
85 |
+
#callbacks=[LoggingCallback()],
|
86 |
+
)
|
87 |
|
88 |
+
# Fine-tune the model
|
89 |
+
trainer.train()
|
90 |
+
trainer.push_to_hub(commit_message="Training complete!")
|
91 |
+
except Exception as e:
|
92 |
+
return f"An error occurred: {str(e)}, TB: {traceback.format_exc()}"
|
93 |
+
return 'DONE!'#model
|
94 |
+
'''
|
95 |
+
# Define Gradio interface
|
96 |
+
def predict(text):
|
97 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name.strip(), num_labels=2)
|
98 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
99 |
+
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
|
100 |
+
outputs = model(inputs)
|
101 |
+
predictions = outputs.logits.argmax(dim=-1)
|
102 |
+
return predictions.item()
|
103 |
+
'''
|
104 |
+
# Create Gradio interface
|
105 |
+
try:
|
106 |
+
iface = gr.Interface(
|
107 |
+
fn=fine_tune_model,
|
108 |
+
inputs=[
|
109 |
+
gr.Textbox(label="Model Name (e.g., 'google/t5-efficient-tiny-nh8')"),
|
110 |
+
gr.Textbox(label="Dataset Name (e.g., 'imdb')"),
|
111 |
+
gr.Textbox(label="HF hub to push to after training"),
|
112 |
+
gr.Textbox(label="HF API token"),
|
113 |
+
gr.Slider(minimum=1, maximum=10, value=3, label="Number of Epochs", step=1),
|
114 |
+
gr.Slider(minimum=1, maximum=2000, value=1, label="Batch Size", step=1),
|
115 |
+
gr.Slider(minimum=1, maximum=1000, value=1, label="Learning Rate (e-5)", step=1),
|
116 |
+
gr.Slider(minimum=1, maximum=100, value=1, label="Gradient accumulation", step=1),
|
117 |
+
],
|
118 |
+
outputs="text",
|
119 |
+
title="Fine-Tune Hugging Face Model",
|
120 |
+
description="This interface allows you to fine-tune a Hugging Face model on a specified dataset."
|
121 |
+
)
|
122 |
+
'''
|
123 |
+
iface = gr.Interface(
|
124 |
+
fn=predict,
|
125 |
+
inputs=[
|
126 |
+
gr.Textbox(label="Query"),
|
127 |
+
],
|
128 |
+
outputs="text",
|
129 |
+
title="Fine-Tune Hugging Face Model",
|
130 |
+
description="This interface allows you to test a fine-tune Hugging Face model."
|
131 |
+
)
|
132 |
+
'''
|
133 |
+
# Launch the interface
|
134 |
+
iface.launch()
|
135 |
+
except Exception as e:
|
136 |
+
print(f"An error occurred: {str(e)}, TB: {traceback.format_exc()}")
|
137 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
@@ -1 +1,8 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
spaces
|
2 |
+
transformers
|
3 |
+
datasets
|
4 |
+
peft
|
5 |
+
huggingface_hub
|
6 |
+
scikit-learn
|
7 |
+
numpy
|
8 |
+
torch
|