File size: 11,878 Bytes
ab2f056
194731c
ab2f056
b058713
dcbf263
ab2f056
 
 
 
 
 
 
 
d1da5ff
ab2f056
 
 
 
 
 
 
 
 
 
 
 
 
 
36b5e88
ab2f056
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc59d39
 
ab2f056
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5454ef
ab2f056
 
0aa217c
10e867c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5454ef
10e867c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5454ef
fafbcd2
 
3b756d7
e7cde01
 
69cfd5f
3b756d7
a5454ef
 
81f28e8
e7cde01
a5454ef
 
fafbcd2
 
ab2f056
1744a34
 
4dafb88
 
1744a34
ab2f056
1744a34
 
ab2f056
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5277372
ab2f056
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
194731c
c7cf3c2
194731c
d1da5ff
194731c
c17c736
 
038610e
3c24b96
cab69d9
5a38614
 
194731c
 
 
 
 
ab2f056
 
 
 
 
 
 
 
 
 
 
172d00c
 
194731c
4dafb88
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import spaces
import gradio as gr
from transformers import Trainer, TrainingArguments, AutoTokenizer, AutoModelForSeq2SeqLM
from transformers import DataCollatorForSeq2Seq, AutoConfig
from datasets import load_dataset, concatenate_datasets, load_from_disk, DatasetDict
import traceback
from sklearn.metrics import accuracy_score
import numpy as np
import torch
import os
import evaluate
from huggingface_hub import login
from peft import get_peft_model, LoraConfig

os.environ['HF_HOME'] = '/data/.huggingface'
'''
lora_config = LoraConfig(
    r=16,  # Rank of the low-rank adaptation
    lora_alpha=32,  # Scaling factor
    lora_dropout=0.1,  # Dropout for LoRA layers
    bias="none"  # Bias handling
)
model = AutoModelForSeq2SeqLM.from_pretrained('google/t5-efficient-tiny', num_labels=2, force_download=True)
model = get_peft_model(model, lora_config)
model.gradient_checkpointing_enable()
model_save_path = '/data/lora_finetuned_model'  # Specify your desired save path
model.save_pretrained(model_save_path)
'''

def fine_tune_model(model, dataset_name, hub_id, api_key, num_epochs, batch_size, lr, grad):
    try:
        torch.nn.CrossEntropyLoss()
        metric = evaluate.load("rouge", cache_dir='/data/cache')
        def compute_metrics(eval_preds):
            preds, labels = eval_preds
            if isinstance(preds, tuple):
                preds = preds[0]
            # Replace -100s used for padding as we can't decode them
            preds = np.where(preds != -100, preds, tokenizer.pad_token_id)
            decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
            labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
            decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
      
            result = metric.compute(predictions=decoded_preds, references=decoded_labels, use_stemmer=True)
            result = {k: round(v * 100, 4) for k, v in result.items()}
            prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds]
            result["gen_len"] = np.mean(prediction_lens)
            return result
        
        login(api_key.strip())
   
    
        # Load the model and tokenizer
             
        
    
        # Set training arguments
        training_args = TrainingArguments(
            output_dir='/data/results',
            eval_strategy="steps",  # Change this to steps
            save_strategy='steps',
            learning_rate=lr*0.00001,
            per_device_train_batch_size=int(batch_size),
            per_device_eval_batch_size=int(batch_size), 
            num_train_epochs=int(num_epochs),
            weight_decay=0.01,
            #gradient_accumulation_steps=int(grad),
            #max_grad_norm = 1.0, 
            load_best_model_at_end=True,
            metric_for_best_model="accuracy",
            greater_is_better=True,
            logging_dir='/data/logs',
            logging_steps=10,
            #push_to_hub=True,
            hub_model_id=hub_id.strip(),
            fp16=True,
            #lr_scheduler_type='cosine',
            save_steps=100,  # Save checkpoint every 500 steps
            save_total_limit=3, 
        )
        # Check if a checkpoint exists and load it
        if os.path.exists(training_args.output_dir) and os.listdir(training_args.output_dir):
            print("Loading model from checkpoint...")
            model = AutoModelForSeq2SeqLM.from_pretrained(training_args.output_dir)        
    
        tokenizer = AutoTokenizer.from_pretrained('google/t5-efficient-tiny-nh8')
    
        def tokenize_function(examples):
            
            # Assuming 'text' is the input and 'target' is the expected output
            model_inputs = tokenizer(
                examples['text'], 
                max_length=max_length,  # Set to None for dynamic padding
                truncation=True,
                padding='longest',
                return_tensors='pt', 
            )
        
            # Setup the decoder input IDs (shifted right)
            labels = tokenizer(
                examples['target'], 
                max_length=max_length,  # Set to None for dynamic padding
                truncation=True,
                padding='longest',
                #text_target=examples['target'],
                return_tensors='pt', 
            )
        
            # Add labels to the model inputs
            model_inputs["labels"] = labels["input_ids"]
            return model_inputs
    
        #max_length = 512
        # Load the dataset        
        max_length = model.get_input_embeddings().weight.shape[0]
        try:
            saved_dataset = load_from_disk(f'/data/{hub_id.strip()}_train_dataset')                                       
            if os.access(f'/data/{hub_id.strip()}_validation_dataset'):                    
                dataset = load_dataset(dataset_name.strip())
                train_size = len(dataset['train'])
                third_size = train_size // 3
                del dataset['test']
                del dataset['validation']                    
                print("FOUND VALIDATION")
                saved_dataset = load_from_disk(f'/data/{hub_id.strip()}_train_dataset2')     
                third_third = dataset['train'].select(range(third_size*2, train_size))
                dataset['train'] = third_third
                print(dataset)
                print(dataset.keys())
                tokenized_second_half = dataset.map(tokenize_function, batched=True)
                dataset['train'] = concatenate_datasets([saved_dataset['train'], tokenized_second_half['train']])
                dataset['train'].save_to_disk(f'/data/{hub_id.strip()}_train_dataset3')
                return 'THIRD THIRD LOADED'
            
            if not os.access(f'/data/{hub_id.strip()}_train_dataset3'):
                train_dataset = load_from_disk(f'/data/{hub_id.strip()}_train_dataset3')
                if len(dataset['train']) == len(train_dataset['train']):                            
                    dataset = load_dataset(dataset_name.strip())
                    del dataset['train']
                    del dataset['validation']
                    test_set = dataset.map(tokenize_function, batched=True)
                    test_set['test'].save_to_disk(f'/data/{hub_id.strip()}_test_dataset')
                    return 'TRAINING DONE'                
            else:
                train_dataset = load_from_disk(f'/data/{hub_id.strip()}_train_dataset3')
                saved_test_dataset = load_from_disk(f'/data/{hub_id.strip()}_test_dataset')
                print("FOUND TEST")                    
                # Create Trainer
                trainer = Trainer(
                    model=model,
                    args=training_args,
                    train_dataset=train_dataset,
                    eval_dataset=saved_test_dataset,
                    compute_metrics=compute_metrics,
                )                                      
            if os.access(f'/data/{hub_id.strip()}_train_dataset' and not os.access(f'/data/{hub_id.strip()}_train_dataset3')):
                dataset = load_dataset(dataset_name.strip())
                train_size = len(dataset['train'])
                third_size = train_size // 3                
                second_third = dataset['train'].select(range(third_size, third_size*2))
                dataset['train'] = second_third
                del dataset['test']
                tokenized_sh_fq_dataset = dataset.map(tokenize_function, batched=True)
                dataset['train'] = concatenate_datasets([saved_dataset['train'], tokenized_sh_fq_dataset['train']])
                dataset['train'].save_to_disk(f'/data/{hub_id.strip()}_train_dataset2')
                dataset['validation'].save_to_disk(f'/data/{hub_id.strip()}_validation_dataset')
                return 'SECOND THIRD LOADED'
                
        except:
            dataset = load_dataset(dataset_name.strip())
            train_size = len(dataset['train'])
            third_size = train_size // 3            
            # Tokenize the dataset                    
            first_third = dataset['train'].select(range(third_size))
            dataset['train'] = first_third
            del dataset['test']
            del dataset['validation']
            tokenized_first_third = dataset.map(tokenize_function, batched=True)
            
            tokenized_first_third.save_to_disk(f'/data/{hub_id.strip()}_train_dataset')                           
            print('DONE')
            return 'RUN AGAIN TO LOAD REST OF DATA'

        # Fine-tune the model
        if os.path.exists(training_args.output_dir) and os.listdir(training_args.output_dir):
            train_result = trainer.train(resume_from_checkpoint=True)
        else:
            train_result = trainer.train()
        trainer.push_to_hub(commit_message="Training complete!")
    except Exception as e:
        return f"An error occurred: {str(e)}, TB: {traceback.format_exc()}"
    return 'DONE!'#train_result
'''
# Define Gradio interface
def predict(text):
    model = AutoModelForSeq2SeqLM.from_pretrained(model_name.strip(), num_labels=2)
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
    outputs = model(inputs)
    predictions = outputs.logits.argmax(dim=-1)
    return predictions.item()
'''

@spaces.GPU(duration=120)
def run_train(dataset_name, hub_id, api_key, num_epochs, batch_size, lr, grad):
    def initialize_weights(model):
        for name, param in model.named_parameters():
            if 'encoder.block.0.layer.0.DenseReluDense.wi.weight' in name:  # Example layer
                torch.nn.init.xavier_uniform_(param.data)  # Xavier initialization
            elif 'encoder.block.0.layer.0.DenseReluDense.wo.weight' in name:  # Another example layer
                torch.nn.init.kaiming_normal_(param.data)  # Kaiming initialization
    
    config = AutoConfig.from_pretrained("google/t5-efficient-tiny")
    model = AutoModelForSeq2SeqLM.from_config(config)
    initialize_weights(model)
    lora_config = LoraConfig(
        r=16,  # Rank of the low-rank adaptation
        lora_alpha=32,  # Scaling factor
        lora_dropout=0.1,  # Dropout for LoRA layers
        bias="none"  # Bias handling
    )
    model = get_peft_model(model, lora_config)
    result = fine_tune_model(model, dataset_name, hub_id, api_key, num_epochs, batch_size, lr, grad)
    return result
# Create Gradio interface
try:    
    iface = gr.Interface(
        fn=run_train,
        inputs=[
            gr.Textbox(label="Dataset Name (e.g., 'imdb')"),
            gr.Textbox(label="HF hub to push to after training"),
            gr.Textbox(label="HF API token"),
            gr.Slider(minimum=1, maximum=10, value=3, label="Number of Epochs", step=1),
            gr.Slider(minimum=1, maximum=2000, value=1, label="Batch Size", step=1),
            gr.Slider(minimum=1, maximum=1000, value=1, label="Learning Rate (e-5)", step=1),
            gr.Slider(minimum=1, maximum=100, value=1, label="Gradient accumulation", step=1), 
        ],
        outputs="text",
        title="Fine-Tune Hugging Face Model",
        description="This interface allows you to fine-tune a Hugging Face model on a specified dataset."
    )
    '''
    iface = gr.Interface(
        fn=predict,
        inputs=[
            gr.Textbox(label="Query"),
        ],
        outputs="text",
        title="Fine-Tune Hugging Face Model",
        description="This interface allows you to test a fine-tune Hugging Face model."
    )
    '''
    # Launch the interface
    iface.launch()    
except Exception as e:
    print(f"An error occurred: {str(e)}, TB: {traceback.format_exc()}")