File size: 11,878 Bytes
ab2f056 194731c ab2f056 b058713 dcbf263 ab2f056 d1da5ff ab2f056 36b5e88 ab2f056 bc59d39 ab2f056 a5454ef ab2f056 0aa217c 10e867c a5454ef 10e867c a5454ef fafbcd2 3b756d7 e7cde01 69cfd5f 3b756d7 a5454ef 81f28e8 e7cde01 a5454ef fafbcd2 ab2f056 1744a34 4dafb88 1744a34 ab2f056 1744a34 ab2f056 5277372 ab2f056 194731c c7cf3c2 194731c d1da5ff 194731c c17c736 038610e 3c24b96 cab69d9 5a38614 194731c ab2f056 172d00c 194731c 4dafb88 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
import spaces
import gradio as gr
from transformers import Trainer, TrainingArguments, AutoTokenizer, AutoModelForSeq2SeqLM
from transformers import DataCollatorForSeq2Seq, AutoConfig
from datasets import load_dataset, concatenate_datasets, load_from_disk, DatasetDict
import traceback
from sklearn.metrics import accuracy_score
import numpy as np
import torch
import os
import evaluate
from huggingface_hub import login
from peft import get_peft_model, LoraConfig
os.environ['HF_HOME'] = '/data/.huggingface'
'''
lora_config = LoraConfig(
r=16, # Rank of the low-rank adaptation
lora_alpha=32, # Scaling factor
lora_dropout=0.1, # Dropout for LoRA layers
bias="none" # Bias handling
)
model = AutoModelForSeq2SeqLM.from_pretrained('google/t5-efficient-tiny', num_labels=2, force_download=True)
model = get_peft_model(model, lora_config)
model.gradient_checkpointing_enable()
model_save_path = '/data/lora_finetuned_model' # Specify your desired save path
model.save_pretrained(model_save_path)
'''
def fine_tune_model(model, dataset_name, hub_id, api_key, num_epochs, batch_size, lr, grad):
try:
torch.nn.CrossEntropyLoss()
metric = evaluate.load("rouge", cache_dir='/data/cache')
def compute_metrics(eval_preds):
preds, labels = eval_preds
if isinstance(preds, tuple):
preds = preds[0]
# Replace -100s used for padding as we can't decode them
preds = np.where(preds != -100, preds, tokenizer.pad_token_id)
decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
result = metric.compute(predictions=decoded_preds, references=decoded_labels, use_stemmer=True)
result = {k: round(v * 100, 4) for k, v in result.items()}
prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds]
result["gen_len"] = np.mean(prediction_lens)
return result
login(api_key.strip())
# Load the model and tokenizer
# Set training arguments
training_args = TrainingArguments(
output_dir='/data/results',
eval_strategy="steps", # Change this to steps
save_strategy='steps',
learning_rate=lr*0.00001,
per_device_train_batch_size=int(batch_size),
per_device_eval_batch_size=int(batch_size),
num_train_epochs=int(num_epochs),
weight_decay=0.01,
#gradient_accumulation_steps=int(grad),
#max_grad_norm = 1.0,
load_best_model_at_end=True,
metric_for_best_model="accuracy",
greater_is_better=True,
logging_dir='/data/logs',
logging_steps=10,
#push_to_hub=True,
hub_model_id=hub_id.strip(),
fp16=True,
#lr_scheduler_type='cosine',
save_steps=100, # Save checkpoint every 500 steps
save_total_limit=3,
)
# Check if a checkpoint exists and load it
if os.path.exists(training_args.output_dir) and os.listdir(training_args.output_dir):
print("Loading model from checkpoint...")
model = AutoModelForSeq2SeqLM.from_pretrained(training_args.output_dir)
tokenizer = AutoTokenizer.from_pretrained('google/t5-efficient-tiny-nh8')
def tokenize_function(examples):
# Assuming 'text' is the input and 'target' is the expected output
model_inputs = tokenizer(
examples['text'],
max_length=max_length, # Set to None for dynamic padding
truncation=True,
padding='longest',
return_tensors='pt',
)
# Setup the decoder input IDs (shifted right)
labels = tokenizer(
examples['target'],
max_length=max_length, # Set to None for dynamic padding
truncation=True,
padding='longest',
#text_target=examples['target'],
return_tensors='pt',
)
# Add labels to the model inputs
model_inputs["labels"] = labels["input_ids"]
return model_inputs
#max_length = 512
# Load the dataset
max_length = model.get_input_embeddings().weight.shape[0]
try:
saved_dataset = load_from_disk(f'/data/{hub_id.strip()}_train_dataset')
if os.access(f'/data/{hub_id.strip()}_validation_dataset'):
dataset = load_dataset(dataset_name.strip())
train_size = len(dataset['train'])
third_size = train_size // 3
del dataset['test']
del dataset['validation']
print("FOUND VALIDATION")
saved_dataset = load_from_disk(f'/data/{hub_id.strip()}_train_dataset2')
third_third = dataset['train'].select(range(third_size*2, train_size))
dataset['train'] = third_third
print(dataset)
print(dataset.keys())
tokenized_second_half = dataset.map(tokenize_function, batched=True)
dataset['train'] = concatenate_datasets([saved_dataset['train'], tokenized_second_half['train']])
dataset['train'].save_to_disk(f'/data/{hub_id.strip()}_train_dataset3')
return 'THIRD THIRD LOADED'
if not os.access(f'/data/{hub_id.strip()}_train_dataset3'):
train_dataset = load_from_disk(f'/data/{hub_id.strip()}_train_dataset3')
if len(dataset['train']) == len(train_dataset['train']):
dataset = load_dataset(dataset_name.strip())
del dataset['train']
del dataset['validation']
test_set = dataset.map(tokenize_function, batched=True)
test_set['test'].save_to_disk(f'/data/{hub_id.strip()}_test_dataset')
return 'TRAINING DONE'
else:
train_dataset = load_from_disk(f'/data/{hub_id.strip()}_train_dataset3')
saved_test_dataset = load_from_disk(f'/data/{hub_id.strip()}_test_dataset')
print("FOUND TEST")
# Create Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=saved_test_dataset,
compute_metrics=compute_metrics,
)
if os.access(f'/data/{hub_id.strip()}_train_dataset' and not os.access(f'/data/{hub_id.strip()}_train_dataset3')):
dataset = load_dataset(dataset_name.strip())
train_size = len(dataset['train'])
third_size = train_size // 3
second_third = dataset['train'].select(range(third_size, third_size*2))
dataset['train'] = second_third
del dataset['test']
tokenized_sh_fq_dataset = dataset.map(tokenize_function, batched=True)
dataset['train'] = concatenate_datasets([saved_dataset['train'], tokenized_sh_fq_dataset['train']])
dataset['train'].save_to_disk(f'/data/{hub_id.strip()}_train_dataset2')
dataset['validation'].save_to_disk(f'/data/{hub_id.strip()}_validation_dataset')
return 'SECOND THIRD LOADED'
except:
dataset = load_dataset(dataset_name.strip())
train_size = len(dataset['train'])
third_size = train_size // 3
# Tokenize the dataset
first_third = dataset['train'].select(range(third_size))
dataset['train'] = first_third
del dataset['test']
del dataset['validation']
tokenized_first_third = dataset.map(tokenize_function, batched=True)
tokenized_first_third.save_to_disk(f'/data/{hub_id.strip()}_train_dataset')
print('DONE')
return 'RUN AGAIN TO LOAD REST OF DATA'
# Fine-tune the model
if os.path.exists(training_args.output_dir) and os.listdir(training_args.output_dir):
train_result = trainer.train(resume_from_checkpoint=True)
else:
train_result = trainer.train()
trainer.push_to_hub(commit_message="Training complete!")
except Exception as e:
return f"An error occurred: {str(e)}, TB: {traceback.format_exc()}"
return 'DONE!'#train_result
'''
# Define Gradio interface
def predict(text):
model = AutoModelForSeq2SeqLM.from_pretrained(model_name.strip(), num_labels=2)
tokenizer = AutoTokenizer.from_pretrained(model_name)
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
outputs = model(inputs)
predictions = outputs.logits.argmax(dim=-1)
return predictions.item()
'''
@spaces.GPU(duration=120)
def run_train(dataset_name, hub_id, api_key, num_epochs, batch_size, lr, grad):
def initialize_weights(model):
for name, param in model.named_parameters():
if 'encoder.block.0.layer.0.DenseReluDense.wi.weight' in name: # Example layer
torch.nn.init.xavier_uniform_(param.data) # Xavier initialization
elif 'encoder.block.0.layer.0.DenseReluDense.wo.weight' in name: # Another example layer
torch.nn.init.kaiming_normal_(param.data) # Kaiming initialization
config = AutoConfig.from_pretrained("google/t5-efficient-tiny")
model = AutoModelForSeq2SeqLM.from_config(config)
initialize_weights(model)
lora_config = LoraConfig(
r=16, # Rank of the low-rank adaptation
lora_alpha=32, # Scaling factor
lora_dropout=0.1, # Dropout for LoRA layers
bias="none" # Bias handling
)
model = get_peft_model(model, lora_config)
result = fine_tune_model(model, dataset_name, hub_id, api_key, num_epochs, batch_size, lr, grad)
return result
# Create Gradio interface
try:
iface = gr.Interface(
fn=run_train,
inputs=[
gr.Textbox(label="Dataset Name (e.g., 'imdb')"),
gr.Textbox(label="HF hub to push to after training"),
gr.Textbox(label="HF API token"),
gr.Slider(minimum=1, maximum=10, value=3, label="Number of Epochs", step=1),
gr.Slider(minimum=1, maximum=2000, value=1, label="Batch Size", step=1),
gr.Slider(minimum=1, maximum=1000, value=1, label="Learning Rate (e-5)", step=1),
gr.Slider(minimum=1, maximum=100, value=1, label="Gradient accumulation", step=1),
],
outputs="text",
title="Fine-Tune Hugging Face Model",
description="This interface allows you to fine-tune a Hugging Face model on a specified dataset."
)
'''
iface = gr.Interface(
fn=predict,
inputs=[
gr.Textbox(label="Query"),
],
outputs="text",
title="Fine-Tune Hugging Face Model",
description="This interface allows you to test a fine-tune Hugging Face model."
)
'''
# Launch the interface
iface.launch()
except Exception as e:
print(f"An error occurred: {str(e)}, TB: {traceback.format_exc()}") |