Kevin Fink
commited on
Commit
·
33de791
1
Parent(s):
75c24c0
init
Browse files
app.py
CHANGED
@@ -3,7 +3,6 @@ import gradio as gr
|
|
3 |
from transformers import Trainer, TrainingArguments, AutoTokenizer, AutoModelForSeq2SeqLM, TrainerCallback
|
4 |
from transformers import DataCollatorForSeq2Seq
|
5 |
from datasets import load_dataset
|
6 |
-
from datasets import concatenate_datasets
|
7 |
import traceback
|
8 |
from huggingface_hub import login
|
9 |
from peft import get_peft_model, LoraConfig
|
@@ -44,43 +43,30 @@ def fine_tune_model(model_name, dataset_name, hub_id, api_key, num_epochs, batch
|
|
44 |
|
45 |
# Tokenize the dataset
|
46 |
def tokenize_function(examples):
|
47 |
-
|
|
|
48 |
model_inputs = tokenizer(
|
49 |
examples['text'],
|
50 |
-
max_length=max_length,
|
51 |
-
padding=
|
52 |
truncation=True,
|
53 |
)
|
54 |
|
55 |
-
#
|
56 |
labels = tokenizer(
|
57 |
examples['target'],
|
58 |
-
max_length=max_length,
|
59 |
-
padding=
|
60 |
truncation=True,
|
|
|
61 |
)
|
62 |
|
63 |
# Add labels to the model inputs
|
64 |
model_inputs["labels"] = labels["input_ids"]
|
65 |
return model_inputs
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
tokenized_datasets = []
|
70 |
-
|
71 |
-
for i in range(0, len(dataset), chunk_size):
|
72 |
-
chunk = dataset[i:i + chunk_size]
|
73 |
-
tokenized_chunk = chunk.map(tokenize_function, batched=True)
|
74 |
-
tokenized_datasets.append(tokenized_chunk)
|
75 |
-
|
76 |
-
# Concatenate all tokenized chunks into a single dataset
|
77 |
-
return tokenized_datasets
|
78 |
-
|
79 |
-
# Tokenize the dataset in chunks
|
80 |
-
tokenized_datasets = tokenize_in_chunks(dataset, chunk_size=1000)
|
81 |
-
|
82 |
-
# If you want to combine all chunks into a single dataset
|
83 |
-
final_tokenized_dataset = concatenate_datasets(tokenized_datasets)
|
84 |
|
85 |
# Set training arguments
|
86 |
training_args = TrainingArguments(
|
@@ -108,8 +94,8 @@ def fine_tune_model(model_name, dataset_name, hub_id, api_key, num_epochs, batch
|
|
108 |
trainer = Trainer(
|
109 |
model=model,
|
110 |
args=training_args,
|
111 |
-
train_dataset=
|
112 |
-
eval_dataset=
|
113 |
#callbacks=[LoggingCallback()],
|
114 |
)
|
115 |
|
|
|
3 |
from transformers import Trainer, TrainingArguments, AutoTokenizer, AutoModelForSeq2SeqLM, TrainerCallback
|
4 |
from transformers import DataCollatorForSeq2Seq
|
5 |
from datasets import load_dataset
|
|
|
6 |
import traceback
|
7 |
from huggingface_hub import login
|
8 |
from peft import get_peft_model, LoraConfig
|
|
|
43 |
|
44 |
# Tokenize the dataset
|
45 |
def tokenize_function(examples):
|
46 |
+
|
47 |
+
# Assuming 'text' is the input and 'target' is the expected output
|
48 |
model_inputs = tokenizer(
|
49 |
examples['text'],
|
50 |
+
max_length=max_length, # Set to None for dynamic padding
|
51 |
+
padding=False, # Disable padding here, we will handle it later
|
52 |
truncation=True,
|
53 |
)
|
54 |
|
55 |
+
# Setup the decoder input IDs (shifted right)
|
56 |
labels = tokenizer(
|
57 |
examples['target'],
|
58 |
+
max_length=max_length, # Set to None for dynamic padding
|
59 |
+
padding=False, # Disable padding here, we will handle it later
|
60 |
truncation=True,
|
61 |
+
text_target=examples['target'] # Use text_target for target text
|
62 |
)
|
63 |
|
64 |
# Add labels to the model inputs
|
65 |
model_inputs["labels"] = labels["input_ids"]
|
66 |
return model_inputs
|
67 |
+
|
68 |
+
tokenized_datasets = dataset.map(tokenize_function)
|
69 |
+
data_collator = DataCollatorForSeq2Seq(tokenizer, model=model)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
# Set training arguments
|
72 |
training_args = TrainingArguments(
|
|
|
94 |
trainer = Trainer(
|
95 |
model=model,
|
96 |
args=training_args,
|
97 |
+
train_dataset=data_collator['train'],
|
98 |
+
eval_dataset=data_collator['test'],
|
99 |
#callbacks=[LoggingCallback()],
|
100 |
)
|
101 |
|