Kevin Fink
commited on
Commit
·
6527df5
1
Parent(s):
eb75c06
dev
Browse files
app.py
CHANGED
@@ -83,7 +83,7 @@ def fine_tune_model(model, dataset_name, hub_id, api_key, num_epochs, batch_size
|
|
83 |
print("Loading model from checkpoint...")
|
84 |
model = AutoModelForSeq2SeqLM.from_pretrained(training_args.output_dir)
|
85 |
|
86 |
-
max_length =
|
87 |
#max_length = model.get_input_embeddings().weight.shape[0]
|
88 |
try:
|
89 |
tokenized_train_dataset = load_from_disk(f'/data/{hub_id.strip()}_train_dataset')
|
@@ -109,7 +109,8 @@ def fine_tune_model(model, dataset_name, hub_id, api_key, num_epochs, batch_size
|
|
109 |
examples['text'],
|
110 |
max_length=max_length, # Set to None for dynamic padding
|
111 |
truncation=True,
|
112 |
-
padding=
|
|
|
113 |
)
|
114 |
|
115 |
# Setup the decoder input IDs (shifted right)
|
@@ -117,8 +118,9 @@ def fine_tune_model(model, dataset_name, hub_id, api_key, num_epochs, batch_size
|
|
117 |
examples['target'],
|
118 |
max_length=max_length, # Set to None for dynamic padding
|
119 |
truncation=True,
|
120 |
-
padding=
|
121 |
-
text_target=examples['target']
|
|
|
122 |
)
|
123 |
|
124 |
# Add labels to the model inputs
|
@@ -178,7 +180,6 @@ def run_train(dataset_name, hub_id, api_key, num_epochs, batch_size, lr, grad):
|
|
178 |
config = AutoConfig.from_pretrained("google/t5-efficient-tiny")
|
179 |
model = AutoModelForSeq2SeqLM.from_config(config)
|
180 |
initialize_weights(model)
|
181 |
-
print(list(model.named_parameters()))
|
182 |
lora_config = LoraConfig(
|
183 |
r=16, # Rank of the low-rank adaptation
|
184 |
lora_alpha=32, # Scaling factor
|
|
|
83 |
print("Loading model from checkpoint...")
|
84 |
model = AutoModelForSeq2SeqLM.from_pretrained(training_args.output_dir)
|
85 |
|
86 |
+
max_length = 512
|
87 |
#max_length = model.get_input_embeddings().weight.shape[0]
|
88 |
try:
|
89 |
tokenized_train_dataset = load_from_disk(f'/data/{hub_id.strip()}_train_dataset')
|
|
|
109 |
examples['text'],
|
110 |
max_length=max_length, # Set to None for dynamic padding
|
111 |
truncation=True,
|
112 |
+
padding='max_length',
|
113 |
+
return_tensors='pt',
|
114 |
)
|
115 |
|
116 |
# Setup the decoder input IDs (shifted right)
|
|
|
118 |
examples['target'],
|
119 |
max_length=max_length, # Set to None for dynamic padding
|
120 |
truncation=True,
|
121 |
+
padding='max_length',
|
122 |
+
text_target=examples['target'],
|
123 |
+
return_tensors='pt',
|
124 |
)
|
125 |
|
126 |
# Add labels to the model inputs
|
|
|
180 |
config = AutoConfig.from_pretrained("google/t5-efficient-tiny")
|
181 |
model = AutoModelForSeq2SeqLM.from_config(config)
|
182 |
initialize_weights(model)
|
|
|
183 |
lora_config = LoraConfig(
|
184 |
r=16, # Rank of the low-rank adaptation
|
185 |
lora_alpha=32, # Scaling factor
|