Kevin Fink commited on
Commit
726e681
·
1 Parent(s): 1a94d84
Files changed (1) hide show
  1. app.py +14 -11
app.py CHANGED
@@ -2,15 +2,15 @@ import spaces
2
  import gradio as gr
3
  from transformers import Trainer, TrainingArguments, AutoTokenizer, AutoModelForSeq2SeqLM
4
  from transformers import DataCollatorForSeq2Seq, AutoConfig
5
- from datasets import load_dataset, concatenate_datasets, load_from_disk, DatasetDict
6
  import traceback
7
- from sklearn.metrics import accuracy_score
8
- import numpy as np
9
  import torch
10
  import os
11
- import evaluate
12
- from huggingface_hub import login
13
- from peft import get_peft_model, LoraConfig
14
 
15
  os.environ['HF_HOME'] = '/data/.huggingface'
16
  '''
@@ -245,16 +245,19 @@ def fine_tune_model(model, dataset_name, hub_id, api_key, num_epochs, batch_size
245
 
246
  # Define Gradio interface
247
  @spaces.GPU
248
- def predict(text):
249
-
250
  config = AutoConfig.from_pretrained("shorecode/t5-efficient-tiny-nh8-summarizer")
251
  model = AutoModelForSeq2SeqLM.from_config(config)
252
  #initialize_weights(model)
253
  tokenizer = AutoTokenizer.from_pretrained('shorecode/t5-efficient-tiny-nh8-summarizer')
254
  inputs = tokenizer(text, padding='max_length', max_length=512, truncation=True)
255
- outputs = model(inputs)
256
- predictions = outputs.logits.argmax(dim=-1)
257
- return predictions.item()
 
 
 
 
258
 
259
 
260
  @spaces.GPU(duration=120)
 
2
  import gradio as gr
3
  from transformers import Trainer, TrainingArguments, AutoTokenizer, AutoModelForSeq2SeqLM
4
  from transformers import DataCollatorForSeq2Seq, AutoConfig
5
+ #from datasets import load_dataset, concatenate_datasets, load_from_disk, DatasetDict
6
  import traceback
7
+ #from sklearn.metrics import accuracy_score
8
+ #import numpy as np
9
  import torch
10
  import os
11
+ #import evaluate
12
+ #from huggingface_hub import login
13
+ #from peft import get_peft_model, LoraConfig
14
 
15
  os.environ['HF_HOME'] = '/data/.huggingface'
16
  '''
 
245
 
246
  # Define Gradio interface
247
  @spaces.GPU
248
+ def predict(text):
 
249
  config = AutoConfig.from_pretrained("shorecode/t5-efficient-tiny-nh8-summarizer")
250
  model = AutoModelForSeq2SeqLM.from_config(config)
251
  #initialize_weights(model)
252
  tokenizer = AutoTokenizer.from_pretrained('shorecode/t5-efficient-tiny-nh8-summarizer')
253
  inputs = tokenizer(text, padding='max_length', max_length=512, truncation=True)
254
+ if torch.cuda.is_available():
255
+ model = model.to('cuda')
256
+ inputs = {key: value.to('cuda') for key, value in inputs.items()}
257
+ with torch.no_grad(): # Disable gradient calculation for inference
258
+ outputs = model.generate(inputs)
259
+ predictions = tokenizer.decode(outputs[0], skip_special_tokens=True)
260
+ return predictions
261
 
262
 
263
  @spaces.GPU(duration=120)