Kevin Fink
commited on
Commit
·
b994095
1
Parent(s):
069bfa6
dev
Browse files
app.py
CHANGED
|
@@ -12,10 +12,20 @@ import os
|
|
| 12 |
from huggingface_hub import login
|
| 13 |
from peft import get_peft_model, LoraConfig
|
| 14 |
|
| 15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
@spaces.GPU(duration=120)
|
| 18 |
-
def fine_tune_model(
|
| 19 |
try:
|
| 20 |
torch.cuda.empty_cache()
|
| 21 |
def compute_metrics(eval_pred):
|
|
@@ -27,17 +37,10 @@ def fine_tune_model(model_name, dataset_name, hub_id, api_key, num_epochs, batch
|
|
| 27 |
'eval_loss': eval_pred.loss, # If you want to include loss as well
|
| 28 |
}
|
| 29 |
login(api_key.strip())
|
| 30 |
-
|
| 31 |
-
r=16, # Rank of the low-rank adaptation
|
| 32 |
-
lora_alpha=32, # Scaling factor
|
| 33 |
-
lora_dropout=0.1, # Dropout for LoRA layers
|
| 34 |
-
bias="none" # Bias handling
|
| 35 |
-
)
|
| 36 |
|
| 37 |
# Load the model and tokenizer
|
| 38 |
-
|
| 39 |
-
model.gradient_checkpointing_enable()
|
| 40 |
-
#model = get_peft_model(model, lora_config)
|
| 41 |
|
| 42 |
|
| 43 |
# Set training arguments
|
|
@@ -86,7 +89,7 @@ def fine_tune_model(model_name, dataset_name, hub_id, api_key, num_epochs, batch
|
|
| 86 |
except:
|
| 87 |
# Load the dataset
|
| 88 |
dataset = load_dataset(dataset_name.strip())
|
| 89 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
| 90 |
# Tokenize the dataset
|
| 91 |
def tokenize_function(examples):
|
| 92 |
|
|
@@ -148,7 +151,6 @@ try:
|
|
| 148 |
iface = gr.Interface(
|
| 149 |
fn=fine_tune_model,
|
| 150 |
inputs=[
|
| 151 |
-
gr.Textbox(label="Model Name (e.g., 'google/t5-efficient-tiny-nh8')"),
|
| 152 |
gr.Textbox(label="Dataset Name (e.g., 'imdb')"),
|
| 153 |
gr.Textbox(label="HF hub to push to after training"),
|
| 154 |
gr.Textbox(label="HF API token"),
|
|
|
|
| 12 |
from huggingface_hub import login
|
| 13 |
from peft import get_peft_model, LoraConfig
|
| 14 |
|
| 15 |
+
os.environ['HF_HOME'] = '/data/.huggingface'
|
| 16 |
+
|
| 17 |
+
lora_config = LoraConfig(
|
| 18 |
+
r=16, # Rank of the low-rank adaptation
|
| 19 |
+
lora_alpha=32, # Scaling factor
|
| 20 |
+
lora_dropout=0.1, # Dropout for LoRA layers
|
| 21 |
+
bias="none" # Bias handling
|
| 22 |
+
)
|
| 23 |
+
model = AutoModelForSeq2SeqLM.from_pretrained('google/t5-efficient-tiny-nh8', num_labels=2, force_download=True)
|
| 24 |
+
model = get_peft_model(model, lora_config)
|
| 25 |
+
model.gradient_checkpointing_enable()
|
| 26 |
|
| 27 |
@spaces.GPU(duration=120)
|
| 28 |
+
def fine_tune_model(dataset_name, hub_id, api_key, num_epochs, batch_size, lr, grad):
|
| 29 |
try:
|
| 30 |
torch.cuda.empty_cache()
|
| 31 |
def compute_metrics(eval_pred):
|
|
|
|
| 37 |
'eval_loss': eval_pred.loss, # If you want to include loss as well
|
| 38 |
}
|
| 39 |
login(api_key.strip())
|
| 40 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
# Load the model and tokenizer
|
| 43 |
+
|
|
|
|
|
|
|
| 44 |
|
| 45 |
|
| 46 |
# Set training arguments
|
|
|
|
| 89 |
except:
|
| 90 |
# Load the dataset
|
| 91 |
dataset = load_dataset(dataset_name.strip())
|
| 92 |
+
tokenizer = AutoTokenizer.from_pretrained('google/t5-efficient-tiny-nh8')
|
| 93 |
# Tokenize the dataset
|
| 94 |
def tokenize_function(examples):
|
| 95 |
|
|
|
|
| 151 |
iface = gr.Interface(
|
| 152 |
fn=fine_tune_model,
|
| 153 |
inputs=[
|
|
|
|
| 154 |
gr.Textbox(label="Dataset Name (e.g., 'imdb')"),
|
| 155 |
gr.Textbox(label="HF hub to push to after training"),
|
| 156 |
gr.Textbox(label="HF API token"),
|