Kevin Fink
commited on
Commit
·
c0d76c2
1
Parent(s):
0958d38
init
Browse files
app.py
CHANGED
@@ -1,11 +1,24 @@
|
|
1 |
import spaces
|
2 |
import gradio as gr
|
3 |
-
from transformers import Trainer, TrainingArguments, AutoTokenizer, AutoModelForSeq2SeqLM
|
4 |
from datasets import load_dataset
|
5 |
import traceback
|
6 |
from huggingface_hub import login
|
7 |
from peft import get_peft_model, LoraConfig
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
@spaces.GPU
|
10 |
def fine_tune_model(model_name, dataset_name, hub_id, api_key, num_epochs, batch_size, lr, grad):
|
11 |
try:
|
@@ -21,7 +34,7 @@ def fine_tune_model(model_name, dataset_name, hub_id, api_key, num_epochs, batch
|
|
21 |
|
22 |
# Load the model and tokenizer
|
23 |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name.strip(), num_labels=2)
|
24 |
-
|
25 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
26 |
|
27 |
# Tokenize the dataset
|
@@ -37,9 +50,9 @@ def fine_tune_model(model_name, dataset_name, hub_id, api_key, num_epochs, batch
|
|
37 |
eval_strategy="epoch",
|
38 |
save_strategy='epoch',
|
39 |
learning_rate=lr*0.00001,
|
40 |
-
per_device_train_batch_size=batch_size,
|
41 |
-
per_device_eval_batch_size=batch_size,
|
42 |
-
num_train_epochs=num_epochs,
|
43 |
weight_decay=0.01,
|
44 |
gradient_accumulation_steps=grad*0.1,
|
45 |
load_best_model_at_end=True,
|
@@ -59,6 +72,7 @@ def fine_tune_model(model_name, dataset_name, hub_id, api_key, num_epochs, batch
|
|
59 |
args=training_args,
|
60 |
train_dataset=tokenized_datasets['train'],
|
61 |
eval_dataset=tokenized_datasets['validation'],
|
|
|
62 |
)
|
63 |
|
64 |
# Fine-tune the model
|
|
|
1 |
import spaces
|
2 |
import gradio as gr
|
3 |
+
from transformers import Trainer, TrainingArguments, AutoTokenizer, AutoModelForSeq2SeqLM, TrainerCallback
|
4 |
from datasets import load_dataset
|
5 |
import traceback
|
6 |
from huggingface_hub import login
|
7 |
from peft import get_peft_model, LoraConfig
|
8 |
|
9 |
+
class LoggingCallback(TrainerCallback):
|
10 |
+
def on_step_end(self, args, state, control, kwargs):
|
11 |
+
# Log the learning rate
|
12 |
+
current_lr = state.optimizer.param_groups[0]['lr']
|
13 |
+
print(f"Current Learning Rate: {current_lr}")
|
14 |
+
|
15 |
+
def on_epoch_end(self, args, state, control, kwargs):
|
16 |
+
# Log the error rate (assuming you have a metric to calculate it)
|
17 |
+
# Here we assume you have a way to get the validation loss
|
18 |
+
if state.best_metric is not None:
|
19 |
+
error_rate = 1 - state.best_metric # Assuming best_metric is accuracy
|
20 |
+
print(f"Current Error Rate: {error_rate:.4f}")
|
21 |
+
|
22 |
@spaces.GPU
|
23 |
def fine_tune_model(model_name, dataset_name, hub_id, api_key, num_epochs, batch_size, lr, grad):
|
24 |
try:
|
|
|
34 |
|
35 |
# Load the model and tokenizer
|
36 |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name.strip(), num_labels=2)
|
37 |
+
model = get_peft_model(model, lora_config)
|
38 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
39 |
|
40 |
# Tokenize the dataset
|
|
|
50 |
eval_strategy="epoch",
|
51 |
save_strategy='epoch',
|
52 |
learning_rate=lr*0.00001,
|
53 |
+
per_device_train_batch_size=int(batch_size),
|
54 |
+
per_device_eval_batch_size=int(batch_size),
|
55 |
+
num_train_epochs=int(num_epochs),
|
56 |
weight_decay=0.01,
|
57 |
gradient_accumulation_steps=grad*0.1,
|
58 |
load_best_model_at_end=True,
|
|
|
72 |
args=training_args,
|
73 |
train_dataset=tokenized_datasets['train'],
|
74 |
eval_dataset=tokenized_datasets['validation'],
|
75 |
+
callbacks=[LoggingCallback()],
|
76 |
)
|
77 |
|
78 |
# Fine-tune the model
|