Kevin Fink commited on
Commit
e4e682f
·
1 Parent(s): 3429b72
Files changed (1) hide show
  1. app.py +14 -1
app.py CHANGED
@@ -250,9 +250,22 @@ def predict(text):
250
  model = AutoModelForSeq2SeqLM.from_config(config)
251
  #initialize_weights(model)
252
  tokenizer = AutoTokenizer.from_pretrained('shorecode/t5-efficient-tiny-nh8-summarizer')
253
- inputs = tokenizer(text, padding='max_length', max_length=512, truncation=True)
 
 
 
 
 
 
 
254
  with torch.no_grad(): # Disable gradient calculation for inference
255
  outputs = model.generate(inputs)
 
 
 
 
 
 
256
  predictions = tokenizer.decode(outputs[0], skip_special_tokens=True)
257
  print('xxxxxxxxxxxxxxxxxxxxxxx')
258
  print(predictions)
 
250
  model = AutoModelForSeq2SeqLM.from_config(config)
251
  #initialize_weights(model)
252
  tokenizer = AutoTokenizer.from_pretrained('shorecode/t5-efficient-tiny-nh8-summarizer')
253
+ inputs = tokenizer(text, return_tensors="pt", padding='max_length', max_length=512, truncation=True)
254
+
255
+ # Move model and inputs to GPU if available
256
+ if torch.cuda.is_available():
257
+ model = model.to('cuda')
258
+ inputs = {key: value.to('cuda') for key, value in inputs.items()}
259
+
260
+ # Generate outputs
261
  with torch.no_grad(): # Disable gradient calculation for inference
262
  outputs = model.generate(inputs)
263
+
264
+ ## Decode the generated output
265
+ #predictions = tokenizer.decode(outputs[0], skip_special_tokens=True)
266
+ #inputs = tokenizer(text, padding='max_length', max_length=512, truncation=True)
267
+ #with torch.no_grad(): # Disable gradient calculation for inference
268
+ #outputs = model.generate(inputs)
269
  predictions = tokenizer.decode(outputs[0], skip_special_tokens=True)
270
  print('xxxxxxxxxxxxxxxxxxxxxxx')
271
  print(predictions)