Kevin Fink
commited on
Commit
·
f4325ab
1
Parent(s):
b529f79
init
Browse files
app.py
CHANGED
@@ -2,7 +2,7 @@ import spaces
|
|
2 |
import gradio as gr
|
3 |
from transformers import Trainer, TrainingArguments, AutoTokenizer, AutoModelForSeq2SeqLM
|
4 |
from transformers import DataCollatorForSeq2Seq
|
5 |
-
from datasets import load_dataset
|
6 |
import traceback
|
7 |
import os
|
8 |
from huggingface_hub import login
|
@@ -27,33 +27,40 @@ def fine_tune_model(model_name, dataset_name, hub_id, api_key, num_epochs, batch
|
|
27 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
28 |
|
29 |
max_length = 64
|
30 |
-
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
max_length=max_length, # Set to None for dynamic padding
|
38 |
-
padding=True, # Disable padding here, we will handle it later
|
39 |
-
truncation=True,
|
40 |
-
)
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
padding=True, # Disable padding here, we will handle it later
|
47 |
-
truncation=True,
|
48 |
-
text_target=examples['target'] # Use text_target for target text
|
49 |
-
)
|
50 |
|
51 |
-
# Add labels to the model inputs
|
52 |
-
model_inputs["labels"] = labels["input_ids"]
|
53 |
-
return model_inputs
|
54 |
-
|
55 |
-
tokenized_datasets = dataset.map(tokenize_function, batched=True)
|
56 |
-
data_collator = DataCollatorForSeq2Seq(tokenizer, model=model)
|
57 |
|
58 |
# Set training arguments
|
59 |
training_args = TrainingArguments(
|
|
|
2 |
import gradio as gr
|
3 |
from transformers import Trainer, TrainingArguments, AutoTokenizer, AutoModelForSeq2SeqLM
|
4 |
from transformers import DataCollatorForSeq2Seq
|
5 |
+
from datasets import load_dataset, concatenate_datasets, load_from_disk
|
6 |
import traceback
|
7 |
import os
|
8 |
from huggingface_hub import login
|
|
|
27 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
28 |
|
29 |
max_length = 64
|
30 |
+
try:
|
31 |
+
tokenized_train_dataset = load_from_disk(f'{hub_id.strip()}_train_dataset')
|
32 |
+
tokenized_test_dataset = load_from_disk(f'{hub_id.strip()}_test_dataset')
|
33 |
+
tokenized_datasets = concatenate_datasets([tokenized_train_dataset, tokenized_test_dataset])
|
34 |
+
except:
|
35 |
+
# Tokenize the dataset
|
36 |
+
def tokenize_function(examples):
|
37 |
+
|
38 |
+
# Assuming 'text' is the input and 'target' is the expected output
|
39 |
+
model_inputs = tokenizer(
|
40 |
+
examples['text'],
|
41 |
+
max_length=max_length, # Set to None for dynamic padding
|
42 |
+
padding=True, # Disable padding here, we will handle it later
|
43 |
+
truncation=True,
|
44 |
+
)
|
45 |
+
|
46 |
+
# Setup the decoder input IDs (shifted right)
|
47 |
+
labels = tokenizer(
|
48 |
+
examples['target'],
|
49 |
+
max_length=max_length, # Set to None for dynamic padding
|
50 |
+
padding=True, # Disable padding here, we will handle it later
|
51 |
+
truncation=True,
|
52 |
+
text_target=examples['target'] # Use text_target for target text
|
53 |
+
)
|
54 |
|
55 |
+
# Add labels to the model inputs
|
56 |
+
model_inputs["labels"] = labels["input_ids"]
|
57 |
+
return model_inputs
|
|
|
|
|
|
|
|
|
58 |
|
59 |
+
tokenized_datasets = dataset.map(tokenize_function, batched=True)
|
60 |
+
|
61 |
+
tokenized_datasets['train'].save_to_disk(f'{hub_id.strip()}_train_dataset')
|
62 |
+
tokenized_datasets['validation'].save_to_disk(f'{hub_id.strip()}_test_dataset')
|
|
|
|
|
|
|
|
|
63 |
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
# Set training arguments
|
66 |
training_args = TrainingArguments(
|