Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Hugging Face Space: 2D to 3D Stereo Pair Generator using Depth + LaMa Inpainting
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
import torch
|
5 |
+
import numpy as np
|
6 |
+
import cv2
|
7 |
+
from PIL import Image
|
8 |
+
from transformers import DPTForDepthEstimation, DPTFeatureExtractor
|
9 |
+
import requests
|
10 |
+
import tempfile
|
11 |
+
import subprocess
|
12 |
+
import os
|
13 |
+
|
14 |
+
# === DEVICE ===
|
15 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
16 |
+
|
17 |
+
# === DEPTH MODEL ===
|
18 |
+
def load_depth_model():
|
19 |
+
model = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas").to(device)
|
20 |
+
processor = DPTFeatureExtractor.from_pretrained("Intel/dpt-hybrid-midas")
|
21 |
+
return model, processor
|
22 |
+
|
23 |
+
@torch.no_grad()
|
24 |
+
def estimate_depth(image: Image.Image, model, processor):
|
25 |
+
image = image.resize((384, 384))
|
26 |
+
inputs = processor(images=image, return_tensors="pt").to(device)
|
27 |
+
depth = model(**inputs).predicted_depth
|
28 |
+
depth = torch.nn.functional.interpolate(
|
29 |
+
depth.unsqueeze(1),
|
30 |
+
size=image.size[::-1],
|
31 |
+
mode="bicubic",
|
32 |
+
align_corners=False,
|
33 |
+
).squeeze().detach().cpu().numpy()
|
34 |
+
depth_min, depth_max = depth.min(), depth.max()
|
35 |
+
return (depth - depth_min) / (depth_max - depth_min)
|
36 |
+
|
37 |
+
def depth_to_disparity(depth, max_disp=32):
|
38 |
+
return (1.0 - depth) * max_disp
|
39 |
+
|
40 |
+
def generate_right_and_mask(image, disparity):
|
41 |
+
h, w = image.shape[:2]
|
42 |
+
right = np.zeros_like(image)
|
43 |
+
mask = np.ones((h, w), dtype=np.uint8)
|
44 |
+
|
45 |
+
for y in range(h):
|
46 |
+
for x in range(w):
|
47 |
+
d = int(round(disparity[y, x]))
|
48 |
+
x_r = x - d
|
49 |
+
if 0 <= x_r < w:
|
50 |
+
right[y, x_r] = image[y, x]
|
51 |
+
mask[y, x_r] = 0
|
52 |
+
return right, mask
|
53 |
+
|
54 |
+
# === LAMA INPAINTING ===
|
55 |
+
LAMA_API = "https://huggingface.co/spaces/saic-mdal/lama-inpainting"
|
56 |
+
|
57 |
+
def run_lama_inpainting(image_bgr, mask):
|
58 |
+
img = Image.fromarray(cv2.cvtColor(image_bgr, cv2.COLOR_BGR2RGB))
|
59 |
+
mask_img = Image.fromarray(mask * 255).convert("RGB")
|
60 |
+
|
61 |
+
# Save temporarily
|
62 |
+
tmp_dir = tempfile.mkdtemp()
|
63 |
+
img_path = os.path.join(tmp_dir, "input.png")
|
64 |
+
mask_path = os.path.join(tmp_dir, "mask.png")
|
65 |
+
img.save(img_path)
|
66 |
+
mask_img.save(mask_path)
|
67 |
+
|
68 |
+
# Use Hugging Face's API-compatible request
|
69 |
+
files = {"image": open(img_path, "rb"), "mask": open(mask_path, "rb")}
|
70 |
+
response = requests.post(f"{LAMA_API}/run/predict", files=files)
|
71 |
+
if response.status_code == 200:
|
72 |
+
result = Image.open(requests.get(response.json()["data"][0]["name"], stream=True).raw)
|
73 |
+
return cv2.cvtColor(np.array(result), cv2.COLOR_RGB2BGR)
|
74 |
+
else:
|
75 |
+
raise Exception("LAMA inpainting failed")
|
76 |
+
|
77 |
+
# === APP LOGIC ===
|
78 |
+
depth_model, depth_processor = load_depth_model()
|
79 |
+
|
80 |
+
def stereo_pipeline(image_pil):
|
81 |
+
image = image_pil.convert("RGB")
|
82 |
+
image_cv = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
83 |
+
|
84 |
+
depth = estimate_depth(image, depth_model, depth_processor)
|
85 |
+
disparity = depth_to_disparity(depth)
|
86 |
+
right_img, mask = generate_right_and_mask(image_cv, disparity)
|
87 |
+
right_filled = run_lama_inpainting(right_img, mask)
|
88 |
+
|
89 |
+
left = image_pil
|
90 |
+
right = Image.fromarray(cv2.cvtColor(right_filled, cv2.COLOR_BGR2RGB))
|
91 |
+
return left, right
|
92 |
+
|
93 |
+
# === GRADIO UI ===
|
94 |
+
demo = gr.Interface(
|
95 |
+
fn=stereo_pipeline,
|
96 |
+
inputs=gr.Image(type="pil", label="Upload 2D Image"),
|
97 |
+
outputs=[
|
98 |
+
gr.Image(label="Left Eye (Original)"),
|
99 |
+
gr.Image(label="Right Eye (AI Generated)")
|
100 |
+
],
|
101 |
+
title="2D to 3D Stereo Generator with LaMa Inpainting",
|
102 |
+
description="Generates a stereo pair from a 2D image using depth estimation and LaMa AI inpainting to handle occluded pixels in the right-eye view."
|
103 |
+
)
|
104 |
+
|
105 |
+
demo.launch()
|