Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,11 +1,81 @@
|
|
1 |
-
from diffusers import StableDiffusionPipeline, StableDiffusionImg2ImgPipeline, DPMSolverMultistepScheduler
|
2 |
import gradio as gr
|
3 |
import torch
|
4 |
from PIL import Image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
model_id = 'andite/anything-v4.0'
|
7 |
prefix = ''
|
8 |
-
|
|
|
|
|
|
|
|
|
9 |
scheduler = DPMSolverMultistepScheduler.from_pretrained(model_id, subfolder="scheduler")
|
10 |
|
11 |
pipe = StableDiffusionPipeline.from_pretrained(
|
@@ -13,11 +83,23 @@ pipe = StableDiffusionPipeline.from_pretrained(
|
|
13 |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
14 |
scheduler=scheduler)
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
pipe_i2i = StableDiffusionImg2ImgPipeline.from_pretrained(
|
17 |
model_id,
|
18 |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
19 |
scheduler=scheduler)
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
if torch.cuda.is_available():
|
22 |
pipe = pipe.to("cuda")
|
23 |
pipe_i2i = pipe_i2i.to("cuda")
|
@@ -76,14 +158,14 @@ with gr.Blocks(css=css) as demo:
|
|
76 |
f"""
|
77 |
<div class="main-div">
|
78 |
<div>
|
79 |
-
<h1>
|
80 |
</div>
|
81 |
<p>
|
82 |
-
Demo for <a href="https://huggingface.co/andite/anything-v4.0">Anything V4.0</a> Stable Diffusion model.<br>
|
83 |
{"Add the following tokens to your prompts for the model to work properly: <b>prefix</b>" if prefix else ""}
|
84 |
</p>
|
85 |
-
Running on {"<b>GPU 🔥</b>" if torch.cuda.is_available() else f"<b>CPU 🥶</b>. For faster inference it is recommended to <b>upgrade to GPU in <a href='https://huggingface.co/spaces/
|
86 |
-
<a style="display:inline-block" href="https://huggingface.co/spaces/
|
87 |
</div>
|
88 |
"""
|
89 |
)
|
@@ -101,7 +183,15 @@ with gr.Blocks(css=css) as demo:
|
|
101 |
with gr.Column(scale=45):
|
102 |
with gr.Tab("Options"):
|
103 |
with gr.Group():
|
104 |
-
neg_prompt = gr.Textbox(label="Negative prompt",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
auto_prefix = gr.Checkbox(label="Prefix styling tokens automatically ()", value=prefix, visible=prefix)
|
106 |
|
107 |
with gr.Row():
|
@@ -119,6 +209,25 @@ with gr.Blocks(css=css) as demo:
|
|
119 |
image = gr.Image(label="Image", height=256, tool="editor", type="pil")
|
120 |
strength = gr.Slider(label="Transformation strength", minimum=0, maximum=1, step=0.01, value=0.5)
|
121 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
auto_prefix.change(lambda x: gr.update(placeholder=f"{prefix} [your prompt]" if x else "[Your prompt]"), inputs=auto_prefix, outputs=prompt, queue=False)
|
123 |
|
124 |
inputs = [prompt, guidance, steps, width, height, seed, image, strength, neg_prompt, auto_prefix]
|
|
|
1 |
+
from diffusers import StableDiffusionPipeline, StableDiffusionImg2ImgPipeline, DPMSolverMultistepScheduler, AutoencoderKL
|
2 |
import gradio as gr
|
3 |
import torch
|
4 |
from PIL import Image
|
5 |
+
from huggingface_hub import hf_hub_download
|
6 |
+
from safetensors.torch import load_file
|
7 |
+
|
8 |
+
|
9 |
+
def convert_safetensors_to_bin(pipeline, state_dict, alpha = 0.4):
|
10 |
+
LORA_PREFIX_UNET = 'lora_unet'
|
11 |
+
LORA_PREFIX_TEXT_ENCODER = 'lora_te'
|
12 |
+
|
13 |
+
visited = []
|
14 |
+
|
15 |
+
# directly update weight in diffusers model
|
16 |
+
for key in state_dict:
|
17 |
+
# it is suggested to print out the key, it usually will be something like below
|
18 |
+
# "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight"
|
19 |
+
|
20 |
+
# as we have set the alpha beforehand, so just skip
|
21 |
+
if '.alpha' in key or key in visited:
|
22 |
+
continue
|
23 |
+
|
24 |
+
if 'text' in key:
|
25 |
+
layer_infos = key.split('.')[0].split(LORA_PREFIX_TEXT_ENCODER + '_')[-1].split('_')
|
26 |
+
curr_layer = pipeline.text_encoder
|
27 |
+
else:
|
28 |
+
layer_infos = key.split('.')[0].split(LORA_PREFIX_UNET + '_')[-1].split('_')
|
29 |
+
curr_layer = pipeline.unet
|
30 |
+
|
31 |
+
# find the target layer
|
32 |
+
temp_name = layer_infos.pop(0)
|
33 |
+
while len(layer_infos) > -1:
|
34 |
+
try:
|
35 |
+
curr_layer = curr_layer.__getattr__(temp_name)
|
36 |
+
if len(layer_infos) > 0:
|
37 |
+
temp_name = layer_infos.pop(0)
|
38 |
+
elif len(layer_infos) == 0:
|
39 |
+
break
|
40 |
+
except Exception:
|
41 |
+
if len(temp_name) > 0:
|
42 |
+
temp_name += '_' + layer_infos.pop(0)
|
43 |
+
else:
|
44 |
+
temp_name = layer_infos.pop(0)
|
45 |
+
|
46 |
+
# org_forward(x) + lora_up(lora_down(x)) * multiplier
|
47 |
+
pair_keys = []
|
48 |
+
if 'lora_down' in key:
|
49 |
+
pair_keys.append(key.replace('lora_down', 'lora_up'))
|
50 |
+
pair_keys.append(key)
|
51 |
+
else:
|
52 |
+
pair_keys.append(key)
|
53 |
+
pair_keys.append(key.replace('lora_up', 'lora_down'))
|
54 |
+
|
55 |
+
# update weight
|
56 |
+
if len(state_dict[pair_keys[0]].shape) == 4:
|
57 |
+
weight_up = state_dict[pair_keys[0]].squeeze(3).squeeze(2).to(torch.float32)
|
58 |
+
weight_down = state_dict[pair_keys[1]].squeeze(3).squeeze(2).to(torch.float32)
|
59 |
+
curr_layer.weight.data += alpha * torch.mm(weight_up, weight_down).unsqueeze(2).unsqueeze(3)
|
60 |
+
else:
|
61 |
+
weight_up = state_dict[pair_keys[0]].to(torch.float32)
|
62 |
+
weight_down = state_dict[pair_keys[1]].to(torch.float32)
|
63 |
+
curr_layer.weight.data += alpha * torch.mm(weight_up, weight_down)
|
64 |
+
|
65 |
+
# update visited list
|
66 |
+
for item in pair_keys:
|
67 |
+
visited.append(item)
|
68 |
+
|
69 |
+
return pipeline
|
70 |
+
|
71 |
|
72 |
model_id = 'andite/anything-v4.0'
|
73 |
prefix = ''
|
74 |
+
lora_path = hf_hub_download(
|
75 |
+
"showee/showee-lora-v1.0", "showee-any4.0.safetensors"
|
76 |
+
)
|
77 |
+
vae_path = "./anything-v4.0-vae/diffusion_pytorch_model.bin"
|
78 |
+
|
79 |
scheduler = DPMSolverMultistepScheduler.from_pretrained(model_id, subfolder="scheduler")
|
80 |
|
81 |
pipe = StableDiffusionPipeline.from_pretrained(
|
|
|
83 |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
84 |
scheduler=scheduler)
|
85 |
|
86 |
+
pipe.vae.load_state_dict(torch.load(vae_path))
|
87 |
+
|
88 |
+
state_dict = load_file(lora_path)
|
89 |
+
pipe = convert_safetensors_to_bin(pipe, state_dict, 0.3)
|
90 |
+
|
91 |
+
|
92 |
pipe_i2i = StableDiffusionImg2ImgPipeline.from_pretrained(
|
93 |
model_id,
|
94 |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
95 |
scheduler=scheduler)
|
96 |
|
97 |
+
pipe_i2i.vae.load_state_dict(torch.load(vae_path))
|
98 |
+
|
99 |
+
state_dict_i2i = load_file(lora_path)
|
100 |
+
pipe_i2i = convert_safetensors_to_bin(pipe, state_dict_i2i, 0.3)
|
101 |
+
|
102 |
+
|
103 |
if torch.cuda.is_available():
|
104 |
pipe = pipe.to("cuda")
|
105 |
pipe_i2i = pipe_i2i.to("cuda")
|
|
|
158 |
f"""
|
159 |
<div class="main-div">
|
160 |
<div>
|
161 |
+
<h1>Showee V1.0</h1>
|
162 |
</div>
|
163 |
<p>
|
164 |
+
Demo for <a href="https://huggingface.co/showee/showee-lora-v1.0">Showee V1.0</a> LoRA adaption weights fine-tuned from <a href="https://huggingface.co/andite/anything-v4.0">Anything V4.0</a> Stable Diffusion model.<br>
|
165 |
{"Add the following tokens to your prompts for the model to work properly: <b>prefix</b>" if prefix else ""}
|
166 |
</p>
|
167 |
+
Running on {"<b>GPU 🔥</b>" if torch.cuda.is_available() else f"<b>CPU 🥶</b>. For faster inference it is recommended to <b>upgrade to GPU in <a href='https://huggingface.co/spaces/showee/showee-v1.0/settings'>Settings</a></b>"} after duplicating the space<br><br>
|
168 |
+
<a style="display:inline-block" href="https://huggingface.co/spaces/showee/showee-v1.0?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
|
169 |
</div>
|
170 |
"""
|
171 |
)
|
|
|
183 |
with gr.Column(scale=45):
|
184 |
with gr.Tab("Options"):
|
185 |
with gr.Group():
|
186 |
+
neg_prompt = gr.Textbox(label="Negative prompt",
|
187 |
+
placeholder="What to exclude from the image",
|
188 |
+
value="NSFW, lowres, ((bad anatomy)), ((bad hands)), text, missing finger, "
|
189 |
+
"extra digits, fewer digits, blurry, ((mutated hands and fingers)), "
|
190 |
+
"(poorly drawn face), ((mutation)), ((deformed face)), (ugly), "
|
191 |
+
"((bad proportions)), ((extra limbs)), extra face, (double head), "
|
192 |
+
"(extra head), ((extra feet)), monster, logo, cropped, worst quality, "
|
193 |
+
"low quality, normal quality, jpeg, humpbacked, long body, long neck, "
|
194 |
+
"((jpeg artifacts))")
|
195 |
auto_prefix = gr.Checkbox(label="Prefix styling tokens automatically ()", value=prefix, visible=prefix)
|
196 |
|
197 |
with gr.Row():
|
|
|
209 |
image = gr.Image(label="Image", height=256, tool="editor", type="pil")
|
210 |
strength = gr.Slider(label="Transformation strength", minimum=0, maximum=1, step=0.01, value=0.5)
|
211 |
|
212 |
+
gr.Examples(
|
213 |
+
[[
|
214 |
+
"masterpiece, best quality, ultra-detailed, illustration, portrait, 1girl, solo, white hair, green eyes, "
|
215 |
+
"aqua_eyes, cat_ears, :3, ahoge, dress, red_jacket, long_sleeves, bangs, black_legwear, hair_ornament, "
|
216 |
+
"hairclip", 8, 25, 768, 1024, 909198616
|
217 |
+
],
|
218 |
+
[
|
219 |
+
"masterpiece, best quality, ultra-detailed, illustration, portrait, 1girl, :3, animal_ears, aqua_eyes, ahoge, "
|
220 |
+
"asymmetrical_legwear, bangs, black_footwear, black_skirt, breasts, cleavage, hair_ornament, hairclip, "
|
221 |
+
"long_hair, navel, thighhighs, smile", 7.5, 25, 512, 768, 9
|
222 |
+
],
|
223 |
+
[
|
224 |
+
"masterpiece, best quality, ultra-detailed, illustration, portrait, 1girl, :3, animal_ears, aqua_eyes, ahoge, seaside,"
|
225 |
+
"asymmetrical_legwear, bangs, black_footwear, black_skirt, breasts, cleavage, hair_ornament, hairclip, "
|
226 |
+
"long_hair, navel, thighhighs", 7.5, 25, 512, 512, 353573117
|
227 |
+
]],
|
228 |
+
[prompt, guidance, steps, width, height, seed],
|
229 |
+
)
|
230 |
+
|
231 |
auto_prefix.change(lambda x: gr.update(placeholder=f"{prefix} [your prompt]" if x else "[Your prompt]"), inputs=auto_prefix, outputs=prompt, queue=False)
|
232 |
|
233 |
inputs = [prompt, guidance, steps, width, height, seed, image, strength, neg_prompt, auto_prefix]
|