from diffusers import StableDiffusionPipeline, StableDiffusionImg2ImgPipeline, DPMSolverMultistepScheduler, AutoencoderKL import gradio as gr import torch from PIL import Image from huggingface_hub import hf_hub_download from safetensors.torch import load_file import os os.environ['CUDA_LAUNCH_BLOCKING'] = '1' def convert_safetensors_to_bin(pipeline, state_dict, alpha = 0.4): LORA_PREFIX_UNET = 'lora_unet' LORA_PREFIX_TEXT_ENCODER = 'lora_te' visited = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if '.alpha' in key or key in visited: continue if 'text' in key: layer_infos = key.split('.')[0].split(LORA_PREFIX_TEXT_ENCODER + '_')[-1].split('_') curr_layer = pipeline.text_encoder else: layer_infos = key.split('.')[0].split(LORA_PREFIX_UNET + '_')[-1].split('_') curr_layer = pipeline.unet # find the target layer temp_name = layer_infos.pop(0) while len(layer_infos) > -1: try: curr_layer = curr_layer.__getattr__(temp_name) if len(layer_infos) > 0: temp_name = layer_infos.pop(0) elif len(layer_infos) == 0: break except Exception: if len(temp_name) > 0: temp_name += '_' + layer_infos.pop(0) else: temp_name = layer_infos.pop(0) # org_forward(x) + lora_up(lora_down(x)) * multiplier pair_keys = [] if 'lora_down' in key: pair_keys.append(key.replace('lora_down', 'lora_up')) pair_keys.append(key) else: pair_keys.append(key) pair_keys.append(key.replace('lora_up', 'lora_down')) # update weight if len(state_dict[pair_keys[0]].shape) == 4: weight_up = state_dict[pair_keys[0]].squeeze(3).squeeze(2).to(torch.float32) weight_down = state_dict[pair_keys[1]].squeeze(3).squeeze(2).to(torch.float32) curr_layer.weight.data += alpha * torch.mm(weight_up, weight_down).unsqueeze(2).unsqueeze(3) else: weight_up = state_dict[pair_keys[0]].to(torch.float32) weight_down = state_dict[pair_keys[1]].to(torch.float32) curr_layer.weight.data += alpha * torch.mm(weight_up, weight_down) # update visited list for item in pair_keys: visited.append(item) return pipeline model_id = 'andite/anything-v4.0' prefix = '' lora_path = hf_hub_download( "showee/showee-lora-v1.0", "showee-any4.0.safetensors" ) vae_path = "./anything-v4.0-vae/diffusion_pytorch_model.bin" scheduler = DPMSolverMultistepScheduler.from_pretrained(model_id, subfolder="scheduler") pipe = StableDiffusionPipeline.from_pretrained( model_id, torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, scheduler=scheduler) pipe.vae.load_state_dict(torch.load(vae_path)) state_dict = load_file(lora_path) pipe = convert_safetensors_to_bin(pipe, state_dict, 0.3) pipe_i2i = StableDiffusionImg2ImgPipeline.from_pretrained( model_id, torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, scheduler=scheduler) pipe_i2i.vae.load_state_dict(torch.load(vae_path)) state_dict_i2i = load_file(lora_path) pipe_i2i = convert_safetensors_to_bin(pipe, state_dict_i2i, 0.3) if torch.cuda.is_available(): pipe = pipe.to("cuda") pipe_i2i = pipe_i2i.to("cuda") def error_str(error, title="Error"): return f"""#### {title} {error}""" if error else "" def inference(prompt, guidance, steps, width=512, height=512, seed=0, img=None, strength=0.5, neg_prompt="", auto_prefix=False): if torch.cuda.is_available(): generator = torch.Generator('cuda').manual_seed(seed) if seed != 0 else None else: generator = torch.Generator().manual_seed(seed) if seed != 0 else None prompt = f"{prefix} {prompt}" if auto_prefix else prompt try: if img is not None: return img_to_img(prompt, neg_prompt, img, strength, guidance, steps, width, height, generator), None else: return txt_to_img(prompt, neg_prompt, guidance, steps, width, height, generator), None except Exception as e: return None, error_str(e) def txt_to_img(prompt, neg_prompt, guidance, steps, width, height, generator): result = pipe( prompt, negative_prompt = neg_prompt, num_inference_steps = int(steps), guidance_scale = guidance, width = width, height = height, generator = generator) return result.images[0] def img_to_img(prompt, neg_prompt, img, strength, guidance, steps, width, height, generator): ratio = min(height / img.height, width / img.width) img = img.resize((int(img.width * ratio), int(img.height * ratio)), Image.LANCZOS) result = pipe_i2i( prompt, negative_prompt = neg_prompt, init_image = img, num_inference_steps = int(steps), strength = strength, guidance_scale = guidance, width = width, height = height, generator = generator) return result.images[0] css = """.main-div div{display:inline-flex;align-items:center;gap:.8rem;font-size:1.75rem}.main-div div h1{font-weight:900;margin-bottom:7px}.main-div p{margin-bottom:10px;font-size:94%}a{text-decoration:underline}.tabs{margin-top:0;margin-bottom:0}#gallery{min-height:20rem} """ with gr.Blocks(css=css) as demo: gr.HTML( f"""

Showee V1.0

Demo for Showee V1.0 LoRA adaption weights fine-tuned from Anything V4.0 Stable Diffusion model.
{"Add the following tokens to your prompts for the model to work properly: prefix" if prefix else ""}

Running on {"GPU 🔥" if torch.cuda.is_available() else f"CPU 🥶. For faster inference it is recommended to upgrade to GPU in Settings"} after duplicating the space

Duplicate Space
""" ) with gr.Row(): with gr.Column(scale=55): with gr.Group(): with gr.Row(): prompt = gr.Textbox(label="Prompt", show_label=False, max_lines=2,placeholder=f"{prefix} [your prompt]").style(container=False) generate = gr.Button(value="Generate").style(rounded=(False, True, True, False)) image_out = gr.Image(height=512) error_output = gr.Markdown() with gr.Column(scale=45): with gr.Tab("Options"): with gr.Group(): neg_prompt = gr.Textbox(label="Negative prompt", placeholder="What to exclude from the image", value="NSFW, lowres, ((bad anatomy)), ((bad hands)), text, missing finger, " "extra digits, fewer digits, blurry, ((mutated hands and fingers)), " "(poorly drawn face), ((mutation)), ((deformed face)), (ugly), " "((bad proportions)), ((extra limbs)), extra face, (double head), " "(extra head), ((extra feet)), monster, logo, cropped, worst quality, " "low quality, normal quality, jpeg, humpbacked, long body, long neck, " "((jpeg artifacts))") auto_prefix = gr.Checkbox(label="Prefix styling tokens automatically ()", value=prefix, visible=prefix) with gr.Row(): guidance = gr.Slider(label="Guidance scale", value=7.5, maximum=15) steps = gr.Slider(label="Steps", value=25, minimum=2, maximum=75, step=1) with gr.Row(): width = gr.Slider(label="Width", value=512, minimum=64, maximum=1024, step=8) height = gr.Slider(label="Height", value=512, minimum=64, maximum=1024, step=8) seed = gr.Slider(0, 2147483647, label='Seed (0 = random)', value=0, step=1) with gr.Tab("Image to image"): with gr.Group(): image = gr.Image(label="Image", height=256, tool="editor", type="pil") strength = gr.Slider(label="Transformation strength", minimum=0, maximum=1, step=0.01, value=0.5) gr.Examples( [[ "masterpiece, best quality, ultra-detailed, illustration, portrait, 1girl, solo, white hair, green eyes, " "aqua_eyes, cat_ears, :3, ahoge, dress, red_jacket, long_sleeves, bangs, black_legwear, hair_ornament, " "hairclip", 8, 25, 768, 1024, 909198616 ], [ "masterpiece, best quality, ultra-detailed, illustration, portrait, 1girl, :3, animal_ears, aqua_eyes, ahoge, " "asymmetrical_legwear, bangs, black_footwear, black_skirt, breasts, cleavage, hair_ornament, hairclip, " "long_hair, navel, thighhighs, smile", 7.5, 25, 512, 768, 9 ], [ "masterpiece, best quality, ultra-detailed, illustration, portrait, 1girl, :3, animal_ears, aqua_eyes, ahoge, seaside," "asymmetrical_legwear, bangs, black_footwear, black_skirt, breasts, cleavage, hair_ornament, hairclip, " "long_hair, navel, thighhighs", 7.5, 25, 512, 512, 353573117 ]], [prompt, guidance, steps, width, height, seed], ) auto_prefix.change(lambda x: gr.update(placeholder=f"{prefix} [your prompt]" if x else "[Your prompt]"), inputs=auto_prefix, outputs=prompt, queue=False) inputs = [prompt, guidance, steps, width, height, seed, image, strength, neg_prompt, auto_prefix] outputs = [image_out, error_output] prompt.submit(inference, inputs=inputs, outputs=outputs) generate.click(inference, inputs=inputs, outputs=outputs) gr.HTML("""

This space was created using SD Space Creator.

""") demo.queue(concurrency_count=1) demo.launch()