Show-1 / showone /pipelines /__init__.py
jayw's picture
initial commit
ff0b056
from dataclasses import dataclass
from typing import List, Union
import numpy as np
import torch
from diffusers.utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available
@dataclass
class TextToVideoPipelineOutput(BaseOutput):
"""
Output class for text to video pipelines.
Args:
frames (`List[np.ndarray]` or `torch.FloatTensor`)
List of denoised frames (essentially images) as NumPy arrays of shape `(height, width, num_channels)` or as
a `torch` tensor. NumPy array present the denoised images of the diffusion pipeline. The length of the list
denotes the video length i.e., the number of frames.
"""
frames: Union[List[np.ndarray], torch.FloatTensor]
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from diffusers.utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
# from .pipeline_t2v_base_latent import TextToVideoSDPipeline # noqa: F401
# from .pipeline_t2v_base_latent_sdxl import TextToVideoSDXLPipeline
from .pipeline_t2v_base_pixel import TextToVideoIFPipeline
from .pipeline_t2v_interp_pixel import TextToVideoIFInterpPipeline
# from .pipeline_t2v_sr_latent import TextToVideoSDSuperResolutionPipeline
from .pipeline_t2v_sr_pixel import TextToVideoIFSuperResolutionPipeline
# from .pipeline_t2v_base_latent_controlnet import TextToVideoSDControlNetPipeline