import html import inspect import re import urllib.parse as ul from typing import Any, Callable, Dict, List, Optional, Union import numpy as np from einops import rearrange import PIL import torch import torch.nn.functional as F from transformers import CLIPImageProcessor, T5EncoderModel, T5Tokenizer from diffusers.loaders import LoraLoaderMixin from diffusers.schedulers import DDPMScheduler from diffusers.utils import ( BACKENDS_MAPPING, is_accelerate_available, is_accelerate_version, is_bs4_available, is_ftfy_available, logging, randn_tensor, ) from diffusers.pipelines.pipeline_utils import DiffusionPipeline from ..models import UNet3DConditionModel from . import TextToVideoPipelineOutput logger = logging.get_logger(__name__) # pylint: disable=invalid-name if is_bs4_available(): from bs4 import BeautifulSoup if is_ftfy_available(): import ftfy def tensor2vid(video: torch.Tensor, mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) -> List[np.ndarray]: # This code is copied from https://github.com/modelscope/modelscope/blob/1509fdb973e5871f37148a4b5e5964cafd43e64d/modelscope/pipelines/multi_modal/text_to_video_synthesis_pipeline.py#L78 # reshape to ncfhw mean = torch.tensor(mean, device=video.device).reshape(1, -1, 1, 1, 1) std = torch.tensor(std, device=video.device).reshape(1, -1, 1, 1, 1) # unnormalize back to [0,1] video = video.mul_(std).add_(mean) video.clamp_(0, 1) # prepare the final outputs i, c, f, h, w = video.shape images = video.permute(2, 3, 0, 4, 1).reshape( f, h, i * w, c ) # 1st (frames, h, batch_size, w, c) 2nd (frames, h, batch_size * w, c) images = images.unbind(dim=0) # prepare a list of indvidual (consecutive frames) images = [(image.cpu().numpy() * 255).astype("uint8") for image in images] # f h w c return images class TextToVideoIFSuperResolutionPipeline(DiffusionPipeline, LoraLoaderMixin): tokenizer: T5Tokenizer text_encoder: T5EncoderModel unet: UNet3DConditionModel scheduler: DDPMScheduler image_noising_scheduler: DDPMScheduler feature_extractor: Optional[CLIPImageProcessor] # safety_checker: Optional[IFSafetyChecker] # watermarker: Optional[IFWatermarker] bad_punct_regex = re.compile( r"[" + "#®•©™&@·º½¾¿¡§~" + "\)" + "\(" + "\]" + "\[" + "\}" + "\{" + "\|" + "\\" + "\/" + "\*" + r"]{1,}" ) # noqa _optional_components = ["tokenizer", "text_encoder", "safety_checker", "feature_extractor", "watermarker"] def __init__( self, tokenizer: T5Tokenizer, text_encoder: T5EncoderModel, unet: UNet3DConditionModel, scheduler: DDPMScheduler, image_noising_scheduler: DDPMScheduler, feature_extractor: Optional[CLIPImageProcessor], ): super().__init__() self.register_modules( tokenizer=tokenizer, text_encoder=text_encoder, unet=unet, scheduler=scheduler, image_noising_scheduler=image_noising_scheduler, feature_extractor=feature_extractor, ) self.safety_checker = None def enable_sequential_cpu_offload(self, gpu_id=0): r""" Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, the pipeline's models have their state dicts saved to CPU and then are moved to a `torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called. """ if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`") device = torch.device(f"cuda:{gpu_id}") models = [ self.text_encoder, self.unet, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(cpu_offloaded_model, device) if self.safety_checker is not None: cpu_offload(self.safety_checker, execution_device=device, offload_buffers=True) def enable_model_cpu_offload(self, gpu_id=0): r""" Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward` method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with `enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`. """ if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.") device = torch.device(f"cuda:{gpu_id}") if self.device.type != "cpu": self.to("cpu", silence_dtype_warnings=True) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) hook = None if self.text_encoder is not None: _, hook = cpu_offload_with_hook(self.text_encoder, device, prev_module_hook=hook) # Accelerate will move the next model to the device _before_ calling the offload hook of the # previous model. This will cause both models to be present on the device at the same time. # IF uses T5 for its text encoder which is really large. We can manually call the offload # hook for the text encoder to ensure it's moved to the cpu before the unet is moved to # the GPU. self.text_encoder_offload_hook = hook _, hook = cpu_offload_with_hook(self.unet, device, prev_module_hook=hook) # if the safety checker isn't called, `unet_offload_hook` will have to be called to manually offload the unet self.unet_offload_hook = hook if self.safety_checker is not None: _, hook = cpu_offload_with_hook(self.safety_checker, device, prev_module_hook=hook) # We'll offload the last model manually. self.final_offload_hook = hook def remove_all_hooks(self): if is_accelerate_available(): from accelerate.hooks import remove_hook_from_module else: raise ImportError("Please install accelerate via `pip install accelerate`") for model in [self.text_encoder, self.unet, self.safety_checker]: if model is not None: remove_hook_from_module(model, recurse=True) self.unet_offload_hook = None self.text_encoder_offload_hook = None self.final_offload_hook = None @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _execution_device(self): r""" Returns the device on which the pipeline's models will be executed. After calling `pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module hooks. """ if not hasattr(self.unet, "_hf_hook"): return self.device for module in self.unet.modules(): if ( hasattr(module, "_hf_hook") and hasattr(module._hf_hook, "execution_device") and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device) return self.device @torch.no_grad() def encode_prompt( self, prompt, do_classifier_free_guidance=True, num_images_per_prompt=1, device=None, negative_prompt=None, prompt_embeds: Optional[torch.FloatTensor] = None, negative_prompt_embeds: Optional[torch.FloatTensor] = None, clean_caption: bool = False, ): r""" Encodes the prompt into text encoder hidden states. Args: prompt (`str` or `List[str]`, *optional*): prompt to be encoded device: (`torch.device`, *optional*): torch device to place the resulting embeddings on num_images_per_prompt (`int`, *optional*, defaults to 1): number of images that should be generated per prompt do_classifier_free_guidance (`bool`, *optional*, defaults to `True`): whether to use classifier free guidance or not negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. """ if prompt is not None and negative_prompt is not None: if type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) if device is None: device = self._execution_device if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] # while T5 can handle much longer input sequences than 77, the text encoder was trained with a max length of 77 for IF max_length = 77 if prompt_embeds is None: prompt = self._text_preprocessing(prompt, clean_caption=clean_caption) text_inputs = self.tokenizer( prompt, padding="max_length", max_length=max_length, truncation=True, add_special_tokens=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( text_input_ids, untruncated_ids ): removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_length - 1 : -1]) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {max_length} tokens: {removed_text}" ) attention_mask = text_inputs.attention_mask.to(device) prompt_embeds = self.text_encoder( text_input_ids.to(device), attention_mask=attention_mask, ) prompt_embeds = prompt_embeds[0] if self.text_encoder is not None: dtype = self.text_encoder.dtype elif self.unet is not None: dtype = self.unet.dtype else: dtype = None prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) bs_embed, seq_len, _ = prompt_embeds.shape # duplicate text embeddings for each generation per prompt, using mps friendly method prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance and negative_prompt_embeds is None: uncond_tokens: List[str] if negative_prompt is None: uncond_tokens = [""] * batch_size elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt] elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: uncond_tokens = negative_prompt uncond_tokens = self._text_preprocessing(uncond_tokens, clean_caption=clean_caption) max_length = prompt_embeds.shape[1] uncond_input = self.tokenizer( uncond_tokens, padding="max_length", max_length=max_length, truncation=True, return_attention_mask=True, add_special_tokens=True, return_tensors="pt", ) attention_mask = uncond_input.attention_mask.to(device) negative_prompt_embeds = self.text_encoder( uncond_input.input_ids.to(device), attention_mask=attention_mask, ) negative_prompt_embeds = negative_prompt_embeds[0] if do_classifier_free_guidance: # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = negative_prompt_embeds.shape[1] negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device) negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes else: negative_prompt_embeds = None return prompt_embeds, negative_prompt_embeds # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs def prepare_extra_step_kwargs(self, generator, eta): # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta # check if the scheduler accepts generator accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: extra_step_kwargs["generator"] = generator return extra_step_kwargs def check_inputs( self, prompt, image, batch_size, noise_level, callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, ): if (callback_steps is None) or ( callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(callback_steps)}." ) if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." ) if noise_level < 0 or noise_level >= self.image_noising_scheduler.config.num_train_timesteps: raise ValueError( f"`noise_level`: {noise_level} must be a valid timestep in `self.noising_scheduler`, [0, {self.image_noising_scheduler.config.num_train_timesteps})" ) if isinstance(image, list): check_image_type = image[0] else: check_image_type = image if ( not isinstance(check_image_type, torch.Tensor) and not isinstance(check_image_type, PIL.Image.Image) and not isinstance(check_image_type, np.ndarray) ): raise ValueError( "`image` has to be of type `torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, or List[...] but is" f" {type(check_image_type)}" ) if isinstance(image, list): image_batch_size = len(image) elif isinstance(image, torch.Tensor): image_batch_size = image.shape[0] elif isinstance(image, PIL.Image.Image): image_batch_size = 1 elif isinstance(image, np.ndarray): image_batch_size = image.shape[0] else: assert False if batch_size != image_batch_size: raise ValueError(f"image batch size: {image_batch_size} must be same as prompt batch size {batch_size}") def prepare_intermediate_images(self, batch_size, num_channels, num_frames, height, width, dtype, device, generator): shape = (batch_size, num_channels, num_frames, height, width) if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) intermediate_images = randn_tensor(shape, generator=generator, device=device, dtype=dtype) # scale the initial noise by the standard deviation required by the scheduler intermediate_images = intermediate_images * self.scheduler.init_noise_sigma return intermediate_images def preprocess_image(self, image, num_images_per_prompt, device): if not isinstance(image, torch.Tensor) and not isinstance(image, list): image = [image] if isinstance(image[0], PIL.Image.Image): image = [np.array(i).astype(np.float32) / 255.0 for i in image] image = np.stack(image, axis=0) # to np torch.from_numpy(image.transpose(0, 3, 1, 2)) elif isinstance(image[0], np.ndarray): image = np.stack(image, axis=0) # to np if image.ndim == 5: image = image[0] image = torch.from_numpy(image.transpose(0, 3, 1, 2)) elif isinstance(image, list) and isinstance(image[0], torch.Tensor): dims = image[0].ndim if dims == 3: image = torch.stack(image, dim=0) elif dims == 4: image = torch.concat(image, dim=0) else: raise ValueError(f"Image must have 3 or 4 dimensions, instead got {dims}") image = image.to(device=device, dtype=self.unet.dtype) image = image.repeat_interleave(num_images_per_prompt, dim=0) return image def _text_preprocessing(self, text, clean_caption=False): if clean_caption and not is_bs4_available(): logger.warn(BACKENDS_MAPPING["bs4"][-1].format("Setting `clean_caption=True`")) logger.warn("Setting `clean_caption` to False...") clean_caption = False if clean_caption and not is_ftfy_available(): logger.warn(BACKENDS_MAPPING["ftfy"][-1].format("Setting `clean_caption=True`")) logger.warn("Setting `clean_caption` to False...") clean_caption = False if not isinstance(text, (tuple, list)): text = [text] def process(text: str): if clean_caption: text = self._clean_caption(text) text = self._clean_caption(text) else: text = text.lower().strip() return text return [process(t) for t in text] def _clean_caption(self, caption): caption = str(caption) caption = ul.unquote_plus(caption) caption = caption.strip().lower() caption = re.sub("", "person", caption) # urls: caption = re.sub( r"\b((?:https?:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa "", caption, ) # regex for urls caption = re.sub( r"\b((?:www:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa "", caption, ) # regex for urls # html: caption = BeautifulSoup(caption, features="html.parser").text # @ caption = re.sub(r"@[\w\d]+\b", "", caption) # 31C0—31EF CJK Strokes # 31F0—31FF Katakana Phonetic Extensions # 3200—32FF Enclosed CJK Letters and Months # 3300—33FF CJK Compatibility # 3400—4DBF CJK Unified Ideographs Extension A # 4DC0—4DFF Yijing Hexagram Symbols # 4E00—9FFF CJK Unified Ideographs caption = re.sub(r"[\u31c0-\u31ef]+", "", caption) caption = re.sub(r"[\u31f0-\u31ff]+", "", caption) caption = re.sub(r"[\u3200-\u32ff]+", "", caption) caption = re.sub(r"[\u3300-\u33ff]+", "", caption) caption = re.sub(r"[\u3400-\u4dbf]+", "", caption) caption = re.sub(r"[\u4dc0-\u4dff]+", "", caption) caption = re.sub(r"[\u4e00-\u9fff]+", "", caption) ####################################################### # все виды тире / all types of dash --> "-" caption = re.sub( r"[\u002D\u058A\u05BE\u1400\u1806\u2010-\u2015\u2E17\u2E1A\u2E3A\u2E3B\u2E40\u301C\u3030\u30A0\uFE31\uFE32\uFE58\uFE63\uFF0D]+", # noqa "-", caption, ) # кавычки к одному стандарту caption = re.sub(r"[`´«»“”¨]", '"', caption) caption = re.sub(r"[‘’]", "'", caption) # " caption = re.sub(r""?", "", caption) # & caption = re.sub(r"&", "", caption) # ip adresses: caption = re.sub(r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}", " ", caption) # article ids: caption = re.sub(r"\d:\d\d\s+$", "", caption) # \n caption = re.sub(r"\\n", " ", caption) # "#123" caption = re.sub(r"#\d{1,3}\b", "", caption) # "#12345.." caption = re.sub(r"#\d{5,}\b", "", caption) # "123456.." caption = re.sub(r"\b\d{6,}\b", "", caption) # filenames: caption = re.sub(r"[\S]+\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)", "", caption) # caption = re.sub(r"[\"\']{2,}", r'"', caption) # """AUSVERKAUFT""" caption = re.sub(r"[\.]{2,}", r" ", caption) # """AUSVERKAUFT""" caption = re.sub(self.bad_punct_regex, r" ", caption) # ***AUSVERKAUFT***, #AUSVERKAUFT caption = re.sub(r"\s+\.\s+", r" ", caption) # " . " # this-is-my-cute-cat / this_is_my_cute_cat regex2 = re.compile(r"(?:\-|\_)") if len(re.findall(regex2, caption)) > 3: caption = re.sub(regex2, " ", caption) caption = ftfy.fix_text(caption) caption = html.unescape(html.unescape(caption)) caption = re.sub(r"\b[a-zA-Z]{1,3}\d{3,15}\b", "", caption) # jc6640 caption = re.sub(r"\b[a-zA-Z]+\d+[a-zA-Z]+\b", "", caption) # jc6640vc caption = re.sub(r"\b\d+[a-zA-Z]+\d+\b", "", caption) # 6640vc231 caption = re.sub(r"(worldwide\s+)?(free\s+)?shipping", "", caption) caption = re.sub(r"(free\s)?download(\sfree)?", "", caption) caption = re.sub(r"\bclick\b\s(?:for|on)\s\w+", "", caption) caption = re.sub(r"\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\simage[s]?)?", "", caption) caption = re.sub(r"\bpage\s+\d+\b", "", caption) caption = re.sub(r"\b\d*[a-zA-Z]+\d+[a-zA-Z]+\d+[a-zA-Z\d]*\b", r" ", caption) # j2d1a2a... caption = re.sub(r"\b\d+\.?\d*[xх×]\d+\.?\d*\b", "", caption) caption = re.sub(r"\b\s+\:\s+", r": ", caption) caption = re.sub(r"(\D[,\./])\b", r"\1 ", caption) caption = re.sub(r"\s+", " ", caption) caption.strip() caption = re.sub(r"^[\"\']([\w\W]+)[\"\']$", r"\1", caption) caption = re.sub(r"^[\'\_,\-\:;]", r"", caption) caption = re.sub(r"[\'\_,\-\:\-\+]$", r"", caption) caption = re.sub(r"^\.\S+$", "", caption) return caption.strip() @torch.no_grad() def __call__( self, prompt: Union[str, List[str]] = None, height: Optional[int] = None, width: Optional[int] = None, image: Union[PIL.Image.Image, np.ndarray, torch.FloatTensor] = None, num_inference_steps: int = 50, timesteps: List[int] = None, guidance_scale: float = 4.0, negative_prompt: Optional[Union[str, List[str]]] = None, num_images_per_prompt: Optional[int] = 1, eta: float = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, prompt_embeds: Optional[torch.FloatTensor] = None, negative_prompt_embeds: Optional[torch.FloatTensor] = None, output_type: Optional[str] = "np", return_dict: bool = True, callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, callback_steps: int = 1, cross_attention_kwargs: Optional[Dict[str, Any]] = None, noise_level: int = 20, clean_caption: bool = True, ): """ Function invoked when calling the pipeline for generation. Args: prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. instead. height (`int`, *optional*, defaults to self.unet.config.sample_size): The height in pixels of the generated image. width (`int`, *optional*, defaults to self.unet.config.sample_size): The width in pixels of the generated image. image (`PIL.Image.Image`, `np.ndarray`, `torch.FloatTensor`): The image to be upscaled. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. timesteps (`List[int]`, *optional*): Custom timesteps to use for the denoising process. If not defined, equal spaced `num_inference_steps` timesteps are used. Must be in descending order. guidance_scale (`float`, *optional*, defaults to 7.5): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to [`schedulers.DDIMScheduler`], will be ignored for others. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple. callback (`Callable`, *optional*): A function that will be called every `callback_steps` steps during inference. The function will be called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. callback_steps (`int`, *optional*, defaults to 1): The frequency at which the `callback` function will be called. If not specified, the callback will be called at every step. cross_attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under `self.processor` in [diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py). noise_level (`int`, *optional*, defaults to 250): The amount of noise to add to the upscaled image. Must be in the range `[0, 1000)` clean_caption (`bool`, *optional*, defaults to `True`): Whether or not to clean the caption before creating embeddings. Requires `beautifulsoup4` and `ftfy` to be installed. If the dependencies are not installed, the embeddings will be created from the raw prompt. Examples: Returns: [`~pipelines.stable_diffusion.IFPipelineOutput`] or `tuple`: [`~pipelines.stable_diffusion.IFPipelineOutput`] if `return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images, and the second element is a list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" (nsfw) or watermarked content, according to the `safety_checker`. """ # 1. Check inputs. Raise error if not correct if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] self.check_inputs( prompt, image, batch_size, noise_level, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds, ) # 2. Define call parameters height = height or self.unet.config.sample_size width = width or self.unet.config.sample_size assert isinstance(image, torch.Tensor), f"{type(image)} is not supported." num_frames = image.shape[2] device = self._execution_device # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0 # 3. Encode input prompt prompt_embeds, negative_prompt_embeds = self.encode_prompt( prompt, do_classifier_free_guidance, num_images_per_prompt=num_images_per_prompt, device=device, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, clean_caption=clean_caption, ) if do_classifier_free_guidance: prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) # 4. Prepare timesteps if timesteps is not None: self.scheduler.set_timesteps(timesteps=timesteps, device=device) timesteps = self.scheduler.timesteps num_inference_steps = len(timesteps) else: self.scheduler.set_timesteps(num_inference_steps, device=device) timesteps = self.scheduler.timesteps # 5. Prepare intermediate images num_channels = self.unet.config.in_channels // 2 intermediate_images = self.prepare_intermediate_images( batch_size * num_images_per_prompt, num_channels, num_frames, height, width, prompt_embeds.dtype, device, generator, ) # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) # 7. Prepare upscaled image and noise level image = self.preprocess_image(image, num_images_per_prompt, device) upscaled = rearrange(image, "b c f h w -> (b f) c h w") upscaled = F.interpolate(upscaled, (height, width), mode="bilinear", align_corners=True) upscaled = rearrange(upscaled, "(b f) c h w -> b c f h w", f=image.shape[2]) noise_level = torch.tensor([noise_level] * upscaled.shape[0], device=upscaled.device) noise = randn_tensor(upscaled.shape, generator=generator, device=upscaled.device, dtype=upscaled.dtype) upscaled = self.image_noising_scheduler.add_noise(upscaled, noise, timesteps=noise_level) if do_classifier_free_guidance: noise_level = torch.cat([noise_level] * 2) # HACK: see comment in `enable_model_cpu_offload` if hasattr(self, "text_encoder_offload_hook") and self.text_encoder_offload_hook is not None: self.text_encoder_offload_hook.offload() # 8. Denoising loop num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): model_input = torch.cat([intermediate_images, upscaled], dim=1) model_input = torch.cat([model_input] * 2) if do_classifier_free_guidance else model_input model_input = self.scheduler.scale_model_input(model_input, t) # predict the noise residual noise_pred = self.unet( model_input, t, encoder_hidden_states=prompt_embeds, class_labels=noise_level, cross_attention_kwargs=cross_attention_kwargs, ).sample # perform guidance if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred_uncond, _ = noise_pred_uncond.split(model_input.shape[1] // 2, dim=1) noise_pred_text, predicted_variance = noise_pred_text.split(model_input.shape[1] // 2, dim=1) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) noise_pred = torch.cat([noise_pred, predicted_variance], dim=1) # reshape latents bsz, channel, frames, height, width = intermediate_images.shape intermediate_images = intermediate_images.permute(0, 2, 1, 3, 4).reshape(bsz * frames, channel, height, width) noise_pred = noise_pred.permute(0, 2, 1, 3, 4).reshape(bsz * frames, -1, height, width) # compute the previous noisy sample x_t -> x_t-1 intermediate_images = self.scheduler.step( noise_pred, t, intermediate_images, **extra_step_kwargs ).prev_sample # reshape latents back intermediate_images = intermediate_images[None, :].reshape(bsz, frames, channel, height, width).permute(0, 2, 1, 3, 4) # call the callback, if provided if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): progress_bar.update() if callback is not None and i % callback_steps == 0: callback(i, t, intermediate_images) video_tensor = intermediate_images if output_type == "pt": video = video_tensor else: video = tensor2vid(video_tensor) # Offload last model to CPU if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (video,) return TextToVideoPipelineOutput(frames=video)