from fastapi import FastAPI from pydantic import BaseModel from transformers import pipeline # 创建 FastAPI 实例 app = FastAPI() # 加载预训练模型 sentiment_model = pipeline("text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta-chinese") # 定义请求体的格式 class TextRequest(BaseModel): text: str # 定义一个 POST 请求处理函数 @app.post("/predict") async def predict(request: TextRequest): result = sentiment_model(request.text) # 打印原始 result print("原始 result:", result) # 获取AI的概率并构建新的输出格式 processed_result = [{ "label": "AI" if result[0]["label"] == "ChatGPT" else "Human", "score": result[0]["score"] if result[0]["label"] == "ChatGPT" else 1 - result[0]["score"] }] # 打印处理后的 result print("处理后的 result:", processed_result) return {"result": processed_result} if __name__ == "__main__": import uvicorn uvicorn.run(app, host="0.0.0.0", port=7860)