File size: 1,403 Bytes
5e1e3c6 9b27b5d 142d567 5e1e3c6 9b27b5d 142d567 5e1e3c6 142d567 5e1e3c6 9b27b5d 8c30a62 9b27b5d fb7b381 9b27b5d fb7b381 9b27b5d fb7b381 9b27b5d fb7b381 9b27b5d 83ac076 5e1e3c6 05ce864 229bd35 05ce864 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
from fastapi import FastAPI
from pydantic import BaseModel
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
# 创建 FastAPI 实例
app = FastAPI()
# 加载预训练模型和分词器
tokenizer = AutoTokenizer.from_pretrained("openai-community/roberta-base-openai-detector")
model = AutoModelForSequenceClassification.from_pretrained("openai-community/roberta-base-openai-detector")
# 定义请求体的格式
class TextRequest(BaseModel):
text: str
# 定义一个 POST 请求处理函数
@app.post("/predict")
async def predict(request: TextRequest):
# 对输入文本进行分词
inputs = tokenizer(request.text, return_tensors="pt", truncation=True, max_length=512)
# 获取模型预测结果
with torch.no_grad():
outputs = model(**inputs)
print("模型原始输出:", outputs )
scores = torch.softmax(outputs.logits, dim=1)
# 获取预测结果
predictions = scores.tolist()[0]
fake_prob = predictions[0] # AI生成的概率
# 构建返回结果
result = [{
"label": "AI" if fake_prob > 0.5 else "Human",
"score": fake_prob # 直接返回AI的概率
}]
# 打印结果用于调试
print("预测结果:", result)
return {"result": result}
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860) |