Spaces:
Sleeping
Sleeping
File size: 11,103 Bytes
f463280 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 |
import torch
import string
import torch.nn.functional as F
import torch.nn as nn
import torchvision.models as models
def decoder(indices, vocab):
tokens = [vocab.lookup_token(idx) for idx in indices]
words = []
current_word = []
for token in tokens:
if len(token) == 1 and token in string.ascii_lowercase:
current_word.append(token)
else:
if current_word:
words.append("".join(current_word))
current_word = []
words.append(token)
if current_word:
words.append(" "+"".join(current_word))
return "".join(words)
def beam_search_caption(model, images, vocab, decoder, device="cpu",
start_token="<sos>", end_token="<eos>",
beam_width=3, max_seq_length=100):
"""
Generates captions for images using beam search.
Args:
model (ImgCap): The image captioning model.
images (torch.Tensor): Batch of images.
vocab (Vocab): Vocabulary object.
decoder (function): Function to decode indices to words.
device (str): Device to perform computation on.
start_token (str): Start-of-sequence token.
end_token (str): End-of-sequence token.
beam_width (int): Number of beams to keep.
max_seq_length (int): Maximum length of the generated caption.
Returns:
list: Generated captions for each image in the batch.
"""
model.eval()
with torch.no_grad():
start_index = vocab[start_token]
end_index = vocab[end_token]
images = images.to(device)
batch_size = images.size(0)
# Ensure batch_size is 1 for beam search (one image at a time)
if batch_size != 1:
raise ValueError("Beam search currently supports batch_size=1.")
cnn_feature = model.cnn(images) # Shape: (1, 1024)
lstm_input = model.lstm.projection(cnn_feature).unsqueeze(1) # Shape: (1, 1, 1024)
state = None # Initial LSTM state
# Initialize the beam with the start token
sequences = [([start_index], 0.0, lstm_input, state)] # List of tuples: (sequence, score, input, state)
completed_sequences = []
for _ in range(max_seq_length):
all_candidates = []
# Iterate over all current sequences in the beam
for seq, score, lstm_input, state in sequences:
# If the last token is the end token, add the sequence to completed_sequences
if seq[-1] == end_index:
completed_sequences.append((seq, score))
continue
# Pass the current input and state through the LSTM
lstm_out, state_new = model.lstm.lstm(lstm_input, state) # lstm_out: (1, 1, 1024)
# Pass the LSTM output through the fully connected layer to get logits
output = model.lstm.fc(lstm_out.squeeze(1)) # Shape: (1, vocab_size)
# Compute log probabilities
log_probs = F.log_softmax(output, dim=1) # Shape: (1, vocab_size)
# Get the top beam_width tokens and their log probabilities
top_log_probs, top_indices = log_probs.topk(beam_width, dim=1) # Each of shape: (1, beam_width)
# Iterate over the top tokens to create new candidate sequences
for i in range(beam_width):
token = top_indices[0, i].item()
token_log_prob = top_log_probs[0, i].item()
# Create a new sequence by appending the current token
new_seq = seq + [token]
new_score = score + token_log_prob
# Get the embedding of the new token
token_tensor = torch.tensor([token], device=device)
new_lstm_input = model.lstm.embedding(token_tensor).unsqueeze(1) # Shape: (1, 1, 1024)
# Clone the new state to ensure each beam has its own state
if state_new is not None:
new_state = (state_new[0].clone(), state_new[1].clone())
else:
new_state = None
# Add the new candidate to all_candidates
all_candidates.append((new_seq, new_score, new_lstm_input, new_state))
# If no candidates are left to process, break out of the loop
if not all_candidates:
break
# Sort all candidates by score in descending order
ordered = sorted(all_candidates, key=lambda tup: tup[1], reverse=True)
# Select the top beam_width sequences to form the new beam
sequences = ordered[:beam_width]
# If enough completed sequences are found, stop early
if len(completed_sequences) >= beam_width:
break
# If no sequences have completed, use the current sequences
if len(completed_sequences) == 0:
completed_sequences = sequences
# Select the sequence with the highest score
best_seq, best_score = max(completed_sequences, key=lambda x: x[1])
if best_seq[0] == start_index:
best_seq = best_seq[1:]
best_caption = decoder(best_seq, vocab)
return best_caption
def generate_caption(model, images, vocab, decoder, device="cpu", start_token="<sos>", end_token="<eos>", max_seq_length=100, top_k=2):
model.eval()
with torch.no_grad():
start_index = vocab[start_token]
end_index = vocab[end_token]
images = images.to(device)
batch_size = images.size(0)
end_token_appear = {i: False for i in range(batch_size)}
captions = [[] for _ in range(batch_size)]
cnn_feature = model.cnn(images)
lstm_input = model.lstm.projection(cnn_feature).unsqueeze(1) # (B, 1, hidden_size)
state = None
for i in range(max_seq_length):
lstm_out, state = model.lstm.lstm(lstm_input, state)
output = model.lstm.fc(lstm_out.squeeze(1))
top_k_probs, top_k_indices = torch.topk(F.softmax(output, dim=1), top_k, dim=1)
top_k_probs = top_k_probs / torch.sum(top_k_probs, dim=1, keepdim=True)
top_k_samples = torch.multinomial(top_k_probs, 1).squeeze()
predicted_word_indices = top_k_indices[range(batch_size), top_k_samples]
lstm_input = model.lstm.embedding(predicted_word_indices).unsqueeze(1) # (B, 1, hidden_size)
for j in range(batch_size):
if end_token_appear[j]:
continue
word = vocab.lookup_token(predicted_word_indices[j].item())
if word == end_token:
end_token_appear[j] = True
captions[j].append(predicted_word_indices[j].item())
captions = [decoder(caption, vocab) for caption in captions]
return captions
class ResNet50(nn.Module):
def __init__(self):
super(ResNet50, self).__init__()
self.ResNet50 = models.resnet50(weights=models.ResNet50_Weights.DEFAULT)
self.ResNet50.fc = nn.Sequential(
nn.Linear(2048, 1024),
nn.ReLU(),
nn.Dropout(0.5),
nn.Linear(1024, 1024),
nn.ReLU(),
)
for k,v in self.ResNet50.named_parameters(recurse=True):
if 'fc' in k:
v.requires_grad = True
else:
v.requires_grad = False
def forward(self,x):
return self.ResNet50(x)
## lSTM (Decoder)
class lstm(nn.Module):
def __init__(self, input_size, hidden_size, number_layers, embedding_dim, vocab_size):
super(lstm, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.number_layers = number_layers
self.embedding_dim = embedding_dim
self.vocab_size = vocab_size
self.embedding = nn.Embedding(vocab_size, hidden_size)
self.projection = nn.Linear(input_size, hidden_size)
self.relu = nn.ReLU()
self.lstm = nn.LSTM(
input_size=hidden_size,
hidden_size=hidden_size,
num_layers=number_layers,
dropout=0.5,
batch_first=True,
)
self.fc = nn.Linear(hidden_size, vocab_size)
def forward(self, x, captions):
projected_image = self.projection(x).unsqueeze(dim=1)
embeddings = self.embedding(captions[:, :-1])
# Concatenate the image feature as frist step with word embeddings
lstm_input = torch.cat((projected_image, embeddings), dim=1)
# print(torch.all(projected_image[:, 0, :] == lstm_input[:, 0, :])) # check
lstm_out, _ = self.lstm(lstm_input)
logits = self.fc(lstm_out)
return logits
## ImgCap
class ImgCap(nn.Module):
def __init__(self, cnn_feature_size, lstm_hidden_size, num_layers, vocab_size, embedding_dim):
super(ImgCap, self).__init__()
self.cnn = ResNet50()
self.lstm = lstm(input_size=cnn_feature_size,
hidden_size=lstm_hidden_size,
number_layers=num_layers,
embedding_dim=embedding_dim,
vocab_size=vocab_size)
def forward(self, images, captions):
cnn_features = self.cnn(images)
output = self.lstm(cnn_features, captions)
return output
def generate_caption(self, images, vocab, decoder, device="cpu", start_token="<sos>", end_token="<eos>", max_seq_length=100):
self.eval()
with torch.no_grad():
start_index = vocab[start_token]
end_index = vocab[end_token]
images = images.to(device)
batch_size = images.size(0)
end_token_appear = {i: False for i in range(batch_size)}
captions = [[] for _ in range(batch_size)]
cnn_feature = self.cnn(images)
lstm_input = self.lstm.projection(cnn_feature).unsqueeze(1) # (B, 1, hidden_size)
state = None
for i in range(max_seq_length):
lstm_out, state = self.lstm.lstm(lstm_input, state)
output = self.lstm.fc(lstm_out.squeeze(1))
predicted_word_indices = torch.argmax(output, dim=1)
lstm_input = self.lstm.embedding(predicted_word_indices).unsqueeze(1) # (B, 1, hidden_size)
for j in range(batch_size):
if end_token_appear[j]:
continue
word = vocab.lookup_token(predicted_word_indices[j].item())
if word == end_token:
end_token_appear[j] = True
captions[j].append(predicted_word_indices[j].item())
captions = [decoder(caption) for caption in captions]
return captions
|