File size: 11,103 Bytes
f463280
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
import torch
import string
import torch.nn.functional as F
import torch.nn as nn
import torchvision.models as models

def decoder(indices, vocab):
    tokens = [vocab.lookup_token(idx) for idx in indices]
    words = []
    current_word = []
    for token in tokens:
        if len(token) == 1 and token in string.ascii_lowercase:
            current_word.append(token)
        else:
            if current_word:
                words.append("".join(current_word))
                current_word = []
            words.append(token)

    if current_word:
        words.append(" "+"".join(current_word))

    return "".join(words)

def beam_search_caption(model, images, vocab, decoder, device="cpu",
                       start_token="<sos>", end_token="<eos>",
                       beam_width=3, max_seq_length=100):
    """
    Generates captions for images using beam search.

    Args:
        model (ImgCap): The image captioning model.
        images (torch.Tensor): Batch of images.
        vocab (Vocab): Vocabulary object.
        decoder (function): Function to decode indices to words.
        device (str): Device to perform computation on.
        start_token (str): Start-of-sequence token.
        end_token (str): End-of-sequence token.
        beam_width (int): Number of beams to keep.
        max_seq_length (int): Maximum length of the generated caption.

    Returns:
        list: Generated captions for each image in the batch.
    """
    model.eval()

    with torch.no_grad():
        start_index = vocab[start_token]
        end_index = vocab[end_token]
        images = images.to(device)
        batch_size = images.size(0)
        
        # Ensure batch_size is 1 for beam search (one image at a time)
        if batch_size != 1:
            raise ValueError("Beam search currently supports batch_size=1.")

        cnn_feature = model.cnn(images)  # Shape: (1, 1024)
        lstm_input = model.lstm.projection(cnn_feature).unsqueeze(1)  # Shape: (1, 1, 1024)
        state = None  # Initial LSTM state

        # Initialize the beam with the start token
        sequences = [([start_index], 0.0, lstm_input, state)]  # List of tuples: (sequence, score, input, state)

        completed_sequences = []

        for _ in range(max_seq_length):
            all_candidates = []

            # Iterate over all current sequences in the beam
            for seq, score, lstm_input, state in sequences:
                # If the last token is the end token, add the sequence to completed_sequences
                if seq[-1] == end_index:
                    completed_sequences.append((seq, score))
                    continue

                # Pass the current input and state through the LSTM
                lstm_out, state_new = model.lstm.lstm(lstm_input, state)  # lstm_out: (1, 1, 1024)

                # Pass the LSTM output through the fully connected layer to get logits
                output = model.lstm.fc(lstm_out.squeeze(1))  # Shape: (1, vocab_size)

                # Compute log probabilities
                log_probs = F.log_softmax(output, dim=1)  # Shape: (1, vocab_size)

                # Get the top beam_width tokens and their log probabilities
                top_log_probs, top_indices = log_probs.topk(beam_width, dim=1)  # Each of shape: (1, beam_width)

                # Iterate over the top tokens to create new candidate sequences
                for i in range(beam_width):
                    token = top_indices[0, i].item()
                    token_log_prob = top_log_probs[0, i].item()

                    # Create a new sequence by appending the current token
                    new_seq = seq + [token]
                    new_score = score + token_log_prob

                    # Get the embedding of the new token
                    token_tensor = torch.tensor([token], device=device)
                    new_lstm_input = model.lstm.embedding(token_tensor).unsqueeze(1)  # Shape: (1, 1, 1024)

                    # Clone the new state to ensure each beam has its own state
                    if state_new is not None:
                        new_state = (state_new[0].clone(), state_new[1].clone())
                    else:
                        new_state = None

                    # Add the new candidate to all_candidates
                    all_candidates.append((new_seq, new_score, new_lstm_input, new_state))

            # If no candidates are left to process, break out of the loop
            if not all_candidates:
                break

            # Sort all candidates by score in descending order
            ordered = sorted(all_candidates, key=lambda tup: tup[1], reverse=True)

            # Select the top beam_width sequences to form the new beam
            sequences = ordered[:beam_width]

            # If enough completed sequences are found, stop early
            if len(completed_sequences) >= beam_width:
                break

        # If no sequences have completed, use the current sequences
        if len(completed_sequences) == 0:
            completed_sequences = sequences

        # Select the sequence with the highest score
        best_seq, best_score = max(completed_sequences, key=lambda x: x[1])

        if best_seq[0] == start_index:
            best_seq = best_seq[1:]

        best_caption = decoder(best_seq, vocab)

    return best_caption


def generate_caption(model, images, vocab, decoder, device="cpu", start_token="<sos>", end_token="<eos>", max_seq_length=100, top_k=2):
    model.eval()

    with torch.no_grad():
        start_index = vocab[start_token]
        end_index = vocab[end_token]
        images = images.to(device)
        batch_size = images.size(0)

        end_token_appear = {i: False for i in range(batch_size)}
        captions = [[] for _ in range(batch_size)]

        cnn_feature = model.cnn(images)
        lstm_input = model.lstm.projection(cnn_feature).unsqueeze(1)  # (B, 1, hidden_size)

        state = None

        for i in range(max_seq_length):
            lstm_out, state = model.lstm.lstm(lstm_input, state)
            output = model.lstm.fc(lstm_out.squeeze(1))

            top_k_probs, top_k_indices = torch.topk(F.softmax(output, dim=1), top_k, dim=1)
            top_k_probs = top_k_probs / torch.sum(top_k_probs, dim=1, keepdim=True)  
            top_k_samples = torch.multinomial(top_k_probs, 1).squeeze()

            predicted_word_indices = top_k_indices[range(batch_size), top_k_samples]

            lstm_input = model.lstm.embedding(predicted_word_indices).unsqueeze(1)  # (B, 1, hidden_size)

            for j in range(batch_size):
                if end_token_appear[j]:
                    continue

                word = vocab.lookup_token(predicted_word_indices[j].item())
                if word == end_token:
                    end_token_appear[j] = True

                captions[j].append(predicted_word_indices[j].item())

        captions = [decoder(caption, vocab) for caption in captions]

    return captions




class ResNet50(nn.Module):
    def __init__(self):
        super(ResNet50, self).__init__()
        self.ResNet50 = models.resnet50(weights=models.ResNet50_Weights.DEFAULT)

        self.ResNet50.fc = nn.Sequential(
                            nn.Linear(2048, 1024),
                            nn.ReLU(),
                            nn.Dropout(0.5),
                            nn.Linear(1024, 1024),
                            nn.ReLU(),
                           )

        for k,v in self.ResNet50.named_parameters(recurse=True):
          if 'fc' in k:
            v.requires_grad = True
          else:
            v.requires_grad = False

    def forward(self,x):
        return self.ResNet50(x)       

## lSTM (Decoder)

class lstm(nn.Module):
    def __init__(self, input_size, hidden_size, number_layers, embedding_dim, vocab_size):
        super(lstm, self).__init__()

        self.input_size = input_size
        self.hidden_size = hidden_size
        self.number_layers = number_layers
        self.embedding_dim = embedding_dim
        self.vocab_size = vocab_size
        
        self.embedding = nn.Embedding(vocab_size, hidden_size)
        self.projection = nn.Linear(input_size, hidden_size)
        self.relu = nn.ReLU()
        
        self.lstm = nn.LSTM(
            input_size=hidden_size,
            hidden_size=hidden_size,
            num_layers=number_layers,
            dropout=0.5,
            batch_first=True,
        )

        self.fc = nn.Linear(hidden_size, vocab_size)

    def forward(self, x, captions):
        projected_image = self.projection(x).unsqueeze(dim=1)
        embeddings = self.embedding(captions[:, :-1])
    
        # Concatenate the image feature as frist step with word embeddings
        lstm_input = torch.cat((projected_image, embeddings), dim=1)
        # print(torch.all(projected_image[:, 0, :] == lstm_input[:, 0, :])) # check
        
        lstm_out, _ = self.lstm(lstm_input)
        logits = self.fc(lstm_out)

        return logits

## ImgCap

class ImgCap(nn.Module):
    def __init__(self, cnn_feature_size, lstm_hidden_size, num_layers, vocab_size, embedding_dim):
        super(ImgCap, self).__init__()

        self.cnn = ResNet50()

        self.lstm = lstm(input_size=cnn_feature_size,
                         hidden_size=lstm_hidden_size,
                         number_layers=num_layers,
                         embedding_dim=embedding_dim,
                         vocab_size=vocab_size)

    def forward(self, images, captions):
        cnn_features = self.cnn(images)
        output = self.lstm(cnn_features, captions)
        return output

    def generate_caption(self, images, vocab, decoder, device="cpu", start_token="<sos>", end_token="<eos>", max_seq_length=100):
        self.eval()

        with torch.no_grad():
            start_index = vocab[start_token]
            end_index = vocab[end_token]
            images = images.to(device)
            batch_size = images.size(0)

            end_token_appear = {i: False for i in range(batch_size)}
            captions = [[] for _ in range(batch_size)]

            cnn_feature = self.cnn(images)
            lstm_input = self.lstm.projection(cnn_feature).unsqueeze(1)  # (B, 1, hidden_size)

            state = None

            for i in range(max_seq_length):
                lstm_out, state = self.lstm.lstm(lstm_input, state)
                output = self.lstm.fc(lstm_out.squeeze(1))
                predicted_word_indices = torch.argmax(output, dim=1)
                lstm_input = self.lstm.embedding(predicted_word_indices).unsqueeze(1)  # (B, 1, hidden_size)

                for j in range(batch_size):
                    if end_token_appear[j]:
                        continue

                    word = vocab.lookup_token(predicted_word_indices[j].item())
                    if word == end_token:
                        end_token_appear[j] = True

                    captions[j].append(predicted_word_indices[j].item())

            captions = [decoder(caption) for caption in captions]

        return captions