ImgCap / trainning.py
shredder-31's picture
Create trainning.py
f463280 verified
raw
history blame
11.1 kB
import torch
import string
import torch.nn.functional as F
import torch.nn as nn
import torchvision.models as models
def decoder(indices, vocab):
tokens = [vocab.lookup_token(idx) for idx in indices]
words = []
current_word = []
for token in tokens:
if len(token) == 1 and token in string.ascii_lowercase:
current_word.append(token)
else:
if current_word:
words.append("".join(current_word))
current_word = []
words.append(token)
if current_word:
words.append(" "+"".join(current_word))
return "".join(words)
def beam_search_caption(model, images, vocab, decoder, device="cpu",
start_token="<sos>", end_token="<eos>",
beam_width=3, max_seq_length=100):
"""
Generates captions for images using beam search.
Args:
model (ImgCap): The image captioning model.
images (torch.Tensor): Batch of images.
vocab (Vocab): Vocabulary object.
decoder (function): Function to decode indices to words.
device (str): Device to perform computation on.
start_token (str): Start-of-sequence token.
end_token (str): End-of-sequence token.
beam_width (int): Number of beams to keep.
max_seq_length (int): Maximum length of the generated caption.
Returns:
list: Generated captions for each image in the batch.
"""
model.eval()
with torch.no_grad():
start_index = vocab[start_token]
end_index = vocab[end_token]
images = images.to(device)
batch_size = images.size(0)
# Ensure batch_size is 1 for beam search (one image at a time)
if batch_size != 1:
raise ValueError("Beam search currently supports batch_size=1.")
cnn_feature = model.cnn(images) # Shape: (1, 1024)
lstm_input = model.lstm.projection(cnn_feature).unsqueeze(1) # Shape: (1, 1, 1024)
state = None # Initial LSTM state
# Initialize the beam with the start token
sequences = [([start_index], 0.0, lstm_input, state)] # List of tuples: (sequence, score, input, state)
completed_sequences = []
for _ in range(max_seq_length):
all_candidates = []
# Iterate over all current sequences in the beam
for seq, score, lstm_input, state in sequences:
# If the last token is the end token, add the sequence to completed_sequences
if seq[-1] == end_index:
completed_sequences.append((seq, score))
continue
# Pass the current input and state through the LSTM
lstm_out, state_new = model.lstm.lstm(lstm_input, state) # lstm_out: (1, 1, 1024)
# Pass the LSTM output through the fully connected layer to get logits
output = model.lstm.fc(lstm_out.squeeze(1)) # Shape: (1, vocab_size)
# Compute log probabilities
log_probs = F.log_softmax(output, dim=1) # Shape: (1, vocab_size)
# Get the top beam_width tokens and their log probabilities
top_log_probs, top_indices = log_probs.topk(beam_width, dim=1) # Each of shape: (1, beam_width)
# Iterate over the top tokens to create new candidate sequences
for i in range(beam_width):
token = top_indices[0, i].item()
token_log_prob = top_log_probs[0, i].item()
# Create a new sequence by appending the current token
new_seq = seq + [token]
new_score = score + token_log_prob
# Get the embedding of the new token
token_tensor = torch.tensor([token], device=device)
new_lstm_input = model.lstm.embedding(token_tensor).unsqueeze(1) # Shape: (1, 1, 1024)
# Clone the new state to ensure each beam has its own state
if state_new is not None:
new_state = (state_new[0].clone(), state_new[1].clone())
else:
new_state = None
# Add the new candidate to all_candidates
all_candidates.append((new_seq, new_score, new_lstm_input, new_state))
# If no candidates are left to process, break out of the loop
if not all_candidates:
break
# Sort all candidates by score in descending order
ordered = sorted(all_candidates, key=lambda tup: tup[1], reverse=True)
# Select the top beam_width sequences to form the new beam
sequences = ordered[:beam_width]
# If enough completed sequences are found, stop early
if len(completed_sequences) >= beam_width:
break
# If no sequences have completed, use the current sequences
if len(completed_sequences) == 0:
completed_sequences = sequences
# Select the sequence with the highest score
best_seq, best_score = max(completed_sequences, key=lambda x: x[1])
if best_seq[0] == start_index:
best_seq = best_seq[1:]
best_caption = decoder(best_seq, vocab)
return best_caption
def generate_caption(model, images, vocab, decoder, device="cpu", start_token="<sos>", end_token="<eos>", max_seq_length=100, top_k=2):
model.eval()
with torch.no_grad():
start_index = vocab[start_token]
end_index = vocab[end_token]
images = images.to(device)
batch_size = images.size(0)
end_token_appear = {i: False for i in range(batch_size)}
captions = [[] for _ in range(batch_size)]
cnn_feature = model.cnn(images)
lstm_input = model.lstm.projection(cnn_feature).unsqueeze(1) # (B, 1, hidden_size)
state = None
for i in range(max_seq_length):
lstm_out, state = model.lstm.lstm(lstm_input, state)
output = model.lstm.fc(lstm_out.squeeze(1))
top_k_probs, top_k_indices = torch.topk(F.softmax(output, dim=1), top_k, dim=1)
top_k_probs = top_k_probs / torch.sum(top_k_probs, dim=1, keepdim=True)
top_k_samples = torch.multinomial(top_k_probs, 1).squeeze()
predicted_word_indices = top_k_indices[range(batch_size), top_k_samples]
lstm_input = model.lstm.embedding(predicted_word_indices).unsqueeze(1) # (B, 1, hidden_size)
for j in range(batch_size):
if end_token_appear[j]:
continue
word = vocab.lookup_token(predicted_word_indices[j].item())
if word == end_token:
end_token_appear[j] = True
captions[j].append(predicted_word_indices[j].item())
captions = [decoder(caption, vocab) for caption in captions]
return captions
class ResNet50(nn.Module):
def __init__(self):
super(ResNet50, self).__init__()
self.ResNet50 = models.resnet50(weights=models.ResNet50_Weights.DEFAULT)
self.ResNet50.fc = nn.Sequential(
nn.Linear(2048, 1024),
nn.ReLU(),
nn.Dropout(0.5),
nn.Linear(1024, 1024),
nn.ReLU(),
)
for k,v in self.ResNet50.named_parameters(recurse=True):
if 'fc' in k:
v.requires_grad = True
else:
v.requires_grad = False
def forward(self,x):
return self.ResNet50(x)
## lSTM (Decoder)
class lstm(nn.Module):
def __init__(self, input_size, hidden_size, number_layers, embedding_dim, vocab_size):
super(lstm, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.number_layers = number_layers
self.embedding_dim = embedding_dim
self.vocab_size = vocab_size
self.embedding = nn.Embedding(vocab_size, hidden_size)
self.projection = nn.Linear(input_size, hidden_size)
self.relu = nn.ReLU()
self.lstm = nn.LSTM(
input_size=hidden_size,
hidden_size=hidden_size,
num_layers=number_layers,
dropout=0.5,
batch_first=True,
)
self.fc = nn.Linear(hidden_size, vocab_size)
def forward(self, x, captions):
projected_image = self.projection(x).unsqueeze(dim=1)
embeddings = self.embedding(captions[:, :-1])
# Concatenate the image feature as frist step with word embeddings
lstm_input = torch.cat((projected_image, embeddings), dim=1)
# print(torch.all(projected_image[:, 0, :] == lstm_input[:, 0, :])) # check
lstm_out, _ = self.lstm(lstm_input)
logits = self.fc(lstm_out)
return logits
## ImgCap
class ImgCap(nn.Module):
def __init__(self, cnn_feature_size, lstm_hidden_size, num_layers, vocab_size, embedding_dim):
super(ImgCap, self).__init__()
self.cnn = ResNet50()
self.lstm = lstm(input_size=cnn_feature_size,
hidden_size=lstm_hidden_size,
number_layers=num_layers,
embedding_dim=embedding_dim,
vocab_size=vocab_size)
def forward(self, images, captions):
cnn_features = self.cnn(images)
output = self.lstm(cnn_features, captions)
return output
def generate_caption(self, images, vocab, decoder, device="cpu", start_token="<sos>", end_token="<eos>", max_seq_length=100):
self.eval()
with torch.no_grad():
start_index = vocab[start_token]
end_index = vocab[end_token]
images = images.to(device)
batch_size = images.size(0)
end_token_appear = {i: False for i in range(batch_size)}
captions = [[] for _ in range(batch_size)]
cnn_feature = self.cnn(images)
lstm_input = self.lstm.projection(cnn_feature).unsqueeze(1) # (B, 1, hidden_size)
state = None
for i in range(max_seq_length):
lstm_out, state = self.lstm.lstm(lstm_input, state)
output = self.lstm.fc(lstm_out.squeeze(1))
predicted_word_indices = torch.argmax(output, dim=1)
lstm_input = self.lstm.embedding(predicted_word_indices).unsqueeze(1) # (B, 1, hidden_size)
for j in range(batch_size):
if end_token_appear[j]:
continue
word = vocab.lookup_token(predicted_word_indices[j].item())
if word == end_token:
end_token_appear[j] = True
captions[j].append(predicted_word_indices[j].item())
captions = [decoder(caption) for caption in captions]
return captions