Spaces:
Sleeping
Sleeping
import cv2 | |
import pickle | |
import torch | |
import gradio as gr | |
import torchvision.transforms as T | |
from utils import load_checkpoint | |
from trainning import ImgCap, beam_search_caption, decoder | |
def initialize(): | |
with open("vocab.pkl", 'rb') as f: | |
vocab = pickle.load(f) | |
transforms = T.Compose([ | |
T.ToPILImage(), | |
T.Resize((224, 224)), | |
T.ToTensor(), | |
T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), | |
]) | |
checkpoint_path = "checkpoint_epoch_30.pth" | |
model = ImgCap(feature_size=2048, lstm_hidden_size=1024, embedding_dim=1024, num_layers=2, vocab_size=len(vocab)) | |
model, _, _, _, _, _, _ = load_checkpoint(checkpoint_path=checkpoint_path, model=model) | |
return model, vocab, transforms | |
def ImgCap_inference(img, beam_width, model, vocab, transforms): | |
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) | |
img = transforms(img).unsqueeze(0) | |
generated_caption = beam_search_caption(model, img, vocab, decoder, beam_width=beam_width) | |
return generated_caption | |
if __name__ == "__main__": | |
footer_html = "<p style='text-align: center; font-size: 16px;'>Developed by Sherif Ahmed</p>" | |
img1_path = "1 (1).jpeg" | |
img2_path = "1 (2).jpg" | |
examples = [ | |
[img1_path, 2], | |
[img2_path, 5], | |
] | |
model, vocab, transforms = initialize() | |
interface = gr.Interface( | |
fn=lambda img, beam_width: ImgCap_inference(img, beam_width, model, vocab, transforms), | |
inputs=[ | |
'image', | |
gr.Slider(minimum=1, maximum=5, step=1, label="Beam Width") | |
], | |
outputs=gr.Textbox(label="Generated Caption"), | |
title="ImgCap", | |
article=footer_html, | |
examples=examples | |
) | |
interface.launch(debug=True) | |