Spaces:
Sleeping
Sleeping
Update main.py
Browse files
main.py
CHANGED
@@ -6,9 +6,8 @@ import torchvision.transforms as T
|
|
6 |
from utils import load_checkpoint
|
7 |
from trainning import ImgCap, beam_search_caption, decoder
|
8 |
|
9 |
-
def
|
10 |
-
|
11 |
-
with open(f"{root_path}/ImgCap/vocab.pkl", 'rb') as f:
|
12 |
vocab = pickle.load(f)
|
13 |
|
14 |
transforms = T.Compose([
|
@@ -18,11 +17,13 @@ def ImgCap_inference(img, beam_width):
|
|
18 |
T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
19 |
])
|
20 |
|
21 |
-
checkpoint_path =
|
22 |
-
|
23 |
model = ImgCap(cnn_feature_size=1024, lstm_hidden_size=1024, embedding_dim=1024, num_layers=2, vocab_size=len(vocab))
|
24 |
model, _, _, _, _, _, _ = load_checkpoint(checkpoint_path=checkpoint_path, model=model)
|
25 |
|
|
|
|
|
|
|
26 |
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
27 |
img = transforms(img).unsqueeze(0)
|
28 |
|
@@ -32,15 +33,27 @@ def ImgCap_inference(img, beam_width):
|
|
32 |
|
33 |
if __name__ == "__main__":
|
34 |
footer_html = "<p style='text-align: center; font-size: 16px;'>Developed by Sherif Ahmed</p>"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
interface = gr.Interface(
|
37 |
-
fn=ImgCap_inference,
|
38 |
inputs=[
|
39 |
'image',
|
40 |
gr.Slider(minimum=1, maximum=5, step=1, label="Beam Width")
|
41 |
],
|
42 |
outputs=gr.Textbox(label="Generated Caption"),
|
43 |
title="ImgCap",
|
44 |
-
article=footer_html
|
|
|
45 |
)
|
46 |
-
|
|
|
|
6 |
from utils import load_checkpoint
|
7 |
from trainning import ImgCap, beam_search_caption, decoder
|
8 |
|
9 |
+
def initialize():
|
10 |
+
with open("vocab.pkl", 'rb') as f:
|
|
|
11 |
vocab = pickle.load(f)
|
12 |
|
13 |
transforms = T.Compose([
|
|
|
17 |
T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
18 |
])
|
19 |
|
20 |
+
checkpoint_path = "checkpoint_epoch_40.pth"
|
|
|
21 |
model = ImgCap(cnn_feature_size=1024, lstm_hidden_size=1024, embedding_dim=1024, num_layers=2, vocab_size=len(vocab))
|
22 |
model, _, _, _, _, _, _ = load_checkpoint(checkpoint_path=checkpoint_path, model=model)
|
23 |
|
24 |
+
return model, vocab, transforms
|
25 |
+
|
26 |
+
def ImgCap_inference(img, beam_width, model, vocab, transforms):
|
27 |
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
28 |
img = transforms(img).unsqueeze(0)
|
29 |
|
|
|
33 |
|
34 |
if __name__ == "__main__":
|
35 |
footer_html = "<p style='text-align: center; font-size: 16px;'>Developed by Sherif Ahmed</p>"
|
36 |
+
|
37 |
+
img1_path = "1 (1).jpeg"
|
38 |
+
img2_path = "1 (2).jpg"
|
39 |
+
|
40 |
+
examples = [
|
41 |
+
[img1_path, 2],
|
42 |
+
[img2_path, 5],
|
43 |
+
]
|
44 |
+
|
45 |
+
model, vocab, transforms = initialize(root_path)
|
46 |
|
47 |
interface = gr.Interface(
|
48 |
+
fn=lambda img, beam_width: ImgCap_inference(img, beam_width, model, vocab, transforms),
|
49 |
inputs=[
|
50 |
'image',
|
51 |
gr.Slider(minimum=1, maximum=5, step=1, label="Beam Width")
|
52 |
],
|
53 |
outputs=gr.Textbox(label="Generated Caption"),
|
54 |
title="ImgCap",
|
55 |
+
article=footer_html,
|
56 |
+
examples=examples
|
57 |
)
|
58 |
+
|
59 |
+
interface.launch(debug=True)
|