Spaces:
Sleeping
Sleeping
File size: 11,857 Bytes
5a829cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
import streamlit as st
import re
import time
import numpy as np
import pandas as pd
from transformers import AutoTokenizer
import tiktoken
import matplotlib.pyplot as plt
import seaborn as sns
import grapheme
from unicodedata import category
from numpy.linalg import LinAlgError
class TokenizerAnalyzer:
def __init__(self):
self.tokenizers = {}
def add_tokenizer(self, name, model_name):
self.tokenizers[name] = model_name
def tokenize_text(self, tokenizer_name, text):
start_time = time.time()
if tokenizer_name == "gpt-4":
tokenizer = tiktoken.encoding_for_model(tokenizer_name)
tokens = tokenizer.encode(text)
else:
tokenizer = AutoTokenizer.from_pretrained(self.tokenizers[tokenizer_name])
tokens = tokenizer.tokenize(text)
end_time = time.time()
tokenization_time = end_time - start_time
return tokens, tokenization_time
def analyze_vocab(self, vocab_file):
latin_count = 0
non_latin_count = 0
latin_total_length = 0
non_latin_total_length = 0
incomplete_bytes_count = 0
# Regular expression to match sequences starting with '\\x'
incomplete_bytes_regex = special_char_regex = re.compile(r"(?<!\\)(\\x|\\\\x)")
with open(vocab_file, 'r') as f:
for line in f:
token = re.sub(r"^(?P<quote>['\"])(.*?)(?P=quote)$", r"\2", line)
if not "gpt-4" in vocab_file:
token = re.sub("_", "", token)
token = token.strip()
is_latin = True
token_length = len(token)
# Check for special character sequence at the beginning of the token
if incomplete_bytes_regex.match(token):
incomplete_bytes_count += 1
continue # Skip further processing for this token
for char in token:
char_category = category(char)
if char_category != "Ll" and char_category != "Lu": # Check for non-Latin characters
is_latin = False
break # Exit the inner loop if a Latin character is found
# Process token based on its category
if is_latin:
latin_count += 1
latin_total_length += token_length
else:
non_latin_count += 1
non_latin_total_length += token_length
# non_latin_count += incomplete_hex_count
#average length doe not make sense because there are tokens like: /****************************************************************
# non_latin_count also includes cases like .WaitFor
return {
"latin": latin_count,
"non_latin": non_latin_count,
"incomplete_bytes": incomplete_bytes_count
}
def visualize_tokens(self, text, tokenizer):
if tokenizer =="gpt-4":
tokenizer = tiktoken.encoding_for_model(tokenizer)
token_ids = tokenizer.encode(text)
graphemes = list(grapheme.graphemes(text))
# token_ids, str_tokens = [], []
# for grapheme_ in graphemes:
# token_id = tokenizer.encode(grapheme_)
# str_tokens.append(tokenizer.decode(token_id))
# token_ids.append(token_id)
str_tokens = []
for token in token_ids:
str_tokens.append(tokenizer.decode([token], errors="backslashreplace"))
else:
tokenizer = AutoTokenizer.from_pretrained(tokenizer)
tokens = tokenizer.tokenize(text)
str_tokens = []
for token in tokens:
str_tokens.append(tokenizer.convert_tokens_to_string([token]))
token_ids = tokenizer.convert_tokens_to_ids(tokens)
colors = ['#ffdab9', '#e6ee9c', '#9cddc8', '#bcaaa4', '#c5b0d5']
html = ""
for i, token in enumerate(str_tokens):
color = colors[i % len(colors)]
html += f'<mark title="{token}" style="background-color: {color};">{token}</mark>'
st.write("Token IDs:", token_ids)
st.write(html, unsafe_allow_html=True)
def plot_vocab_counts(self, vocab_count_dict):
outer_keys = list(vocab_count_dict.keys())
inner_keys = list(vocab_count_dict[outer_keys[0]].keys())
values = [[vocab[key] for key in inner_keys] for vocab in vocab_count_dict.values()]
x = outer_keys
num_groups = len(x)
pastel_palette = sns.color_palette("pastel", num_groups)
fig, ax = plt.subplots(figsize=(10, 6))
bar_width = 0.8 / num_groups
x_pos = [i + (1 - 0.8) / 2 for i in range(num_groups)]
for i, y_values in enumerate(values):
x_val = [x_pos[j] + bar_width * i for j in range(num_groups)]
ax.bar(x_val, y_values, width=bar_width, label=x[i], color=pastel_palette[i])
for j, value in enumerate(y_values):
ax.annotate(str(value), xy=(x_val[j], value), xytext=(0, 3),
textcoords="offset points", ha='center', va='bottom')
ax.set_ylabel('Count')
ax.set_title('Vocabulary Counts')
ax.set_xticks(x_pos)
ax.set_xticklabels(inner_keys, rotation=45, ha='right')
ax.legend(title='Vocabularies', loc='upper right')
st.pyplot(fig)
def draw_plots(self, df, tokenizer, selected_languages):
pastel_palette = sns.color_palette("pastel")
df_selected = df[df['language'].isin(selected_languages)]
plot_titles = [f"Time taken to tokenize across languages by {tokenizer}", f"Token Distribution across languages for {tokenizer}", f"Replacement Tokens distribution across languages for {tokenizer}"]
df_columns = [f"{tokenizer}_Time", f"{tokenizer}_TokensCount", f"{tokenizer}_ReplTokensCount"]
for i, column in enumerate(df_columns):
plt.figure(figsize=(10, 6))
try:
sns.histplot(data=df_selected, x=column, hue="language", palette=pastel_palette, kde=True, element="step", stat="density")
if df_selected[column].nunique() > 1 and not df_selected[column].isnull().all():
# Calculate mean and median
try:
mean_value = df_selected[column].mean()
median_value = df_selected[column].median()
# Add vertical lines for mean and median
plt.axvline(mean_value, color='red', linestyle='--', label=f'Mean: {mean_value:.2f}')
plt.axvline(median_value, color='blue', linestyle='--', label=f'Median: {median_value:.2f}')
# Add legend with only mean and median
plt.legend()
except LinAlgError:
st.warning("Singular matrix encountered. Skipping mean and median calculation.")
plt.title(plot_titles[i])
plt.xlabel(column.split("_")[1])
plt.ylabel("Density")
plt.xticks(rotation=45)
st.pyplot(plt.gcf())
except Exception as e:
st.error(f"Can't Draw plot for {column}. Singular matrix encountered. Statistical measures cannot be calculated.")
plt.figure(figsize=(10, 6))
sns.scatterplot(data=df_selected, x="GraphemesCount", y=f"{tokenizer}_TokensCount", hue="language", palette=pastel_palette)
plt.title(f"Graphemes vs. Token Counts across languages for {tokenizer}")
plt.xlabel("Graphemes Count")
plt.ylabel("Token Count")
plt.tight_layout()
st.pyplot(plt.gcf())
def playground_tab(analyzer):
st.title("Tokenization Visualizer for Language Models")
st.markdown("""
You can use this playgorund to visualize tokens generated by the tokenizers used by popular language models.
""")
tokenizer_name = st.selectbox("Choose a Tokenizer", options=list(analyzer.tokenizers.keys()))
text_input = st.text_area("Enter text below to visualize tokens:", height=300)
if st.button("Tokenize"):
if text_input.strip():
analyzer.visualize_tokens(text_input, analyzer.tokenizers[tokenizer_name])
else:
st.error("Please enter some text.")
def analysis_tab(analyzer):
st.title("Tokenizer Performance Analysis for Language Models")
st.markdown("""
You can use this visualizer to understand how tokenizers work across several languages. The default configuration shows results for English, French, Spanish, Hindi, Nepali.
""")
dataset_df = pd.read_csv("data/aya_dataset_features.csv")
available_tokenizers = list(analyzer.tokenizers.keys())
default_tokenizer = available_tokenizers[0] # Change this as per your requirement
selected_tokenizer = st.sidebar.selectbox("Select Tokenizer", options=available_tokenizers, index=available_tokenizers.index(default_tokenizer))
languages = dataset_df["language"].unique()
default_languages = ["English", "French", "Spanish", "Hindi", "Nepali (individual language)"]
selected_languages = st.sidebar.multiselect("Select Languages", languages, default=default_languages)
analyzer.draw_plots(dataset_df, selected_tokenizer, selected_languages)
# Time, Memory --> across languages across tokenizers
# replacement tokens count - across languages across tokenizers
# token distribution - across languages across tokenizers
# graphemes v/s byte counts across languages
# graphemes v/s token counts across languages
#Vocab counts visualization
st.subheader("Latin v/s Non-Latin Entries in Vocab")
st.markdown("""
GPT-4 **cl100k_base.tiktoken** vocab contains:
- 70,988 entries containing only Latin characters
- 29,268 entries containing at least one non-Latin character
- 803 entries with partial byte sequences
""")
vocab_path = ["vocab/gpt-4-vocab.txt", "vocab/nllb-vocab.txt", "vocab/roberta-vocab.txt"]
vocab_count_dicts = {}
for vocab in vocab_path:
vocab_name = vocab.split("/")[-1].split(".")[0]
vocab_count_dict = analyzer.analyze_vocab(vocab)
vocab_count_dicts[vocab_name] = vocab_count_dict
analyzer.plot_vocab_counts(vocab_count_dicts)
def main():
huggingface_tokenizers ={
"XLM-RoBERTa": "FacebookAI/xlm-roberta-base",
"nllb-200-distilled-600M": "facebook/nllb-200-distilled-600M",
}
openai_tokenizers = {
'gpt-4': 'gpt-4',
}
st.sidebar.header("Welcome to Tokenization Playground")
tabs = ['Playground', 'Analysis']
selected_tab = selected_tab = st.sidebar.selectbox('Select from options below:', tabs)
st.sidebar.markdown("""
This App was created as a part of the project: "Beyond the ABCs: Exploring the nuances of tokenization in diverse languages.
""")
analyzer = TokenizerAnalyzer()
for tokenizer, src in huggingface_tokenizers.items():
analyzer.add_tokenizer(tokenizer, src)
for tokenizer, _ in openai_tokenizers.items():
analyzer.add_tokenizer(tokenizer, tokenizer)
if selected_tab == 'Playground':
playground_tab(analyzer)
elif selected_tab == 'Analysis':
analysis_tab(analyzer)
if __name__ == "__main__":
main()
|