File size: 28,101 Bytes
01bb3bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682

# coding:utf-8
import glob
import csv
import cv2
import os
import numpy as np
from shapely.geometry import Polygon


from IndicPhotoOCR.detection import east_config as cfg
from IndicPhotoOCR.detection import east_utils


def get_images(img_root):
    files = []
    for ext in ['jpg']:
        files.extend(glob.glob(
            os.path.join(img_root, '*.{}'.format(ext))))
        # print(glob.glob(
        #     os.path.join(FLAGS.training_data_path, '*.{}'.format(ext))))
    return files


def load_annoataion(p):
    '''
    load annotation from the text file
    :param p:
    :return:
    '''
    text_polys = []
    text_tags = []
    if not os.path.exists(p):
        return np.array(text_polys, dtype=np.float32)
    with open(p, 'r', encoding='UTF-8') as f:
        reader = csv.reader(f)
        for line in reader:
            label = line[-1]
            # strip BOM. \ufeff for python3,  \xef\xbb\bf for python2
            line = [i.strip('\ufeff').strip('\xef\xbb\xbf') for i in line]

            x1, y1, x2, y2, x3, y3, x4, y4 = list(map(float, line[:8]))
            text_polys.append([[x1, y1], [x2, y2], [x3, y3], [x4, y4]])
            # print(text_polys)
            if label == '*' or label == '###':
                text_tags.append(True)
            else:
                text_tags.append(False)
        return np.array(text_polys, dtype=np.float32), np.array(text_tags, dtype=np.bool)


def polygon_area(poly):
    '''
    compute area of a polygon
    :param poly:
    :return:
    '''
    edge = [
        (poly[1][0] - poly[0][0]) * (poly[1][1] + poly[0][1]),
        (poly[2][0] - poly[1][0]) * (poly[2][1] + poly[1][1]),
        (poly[3][0] - poly[2][0]) * (poly[3][1] + poly[2][1]),
        (poly[0][0] - poly[3][0]) * (poly[0][1] + poly[3][1])
    ]
    return np.sum(edge) / 2.


def check_and_validate_polys(polys, tags, xxx_todo_changeme):
    '''
    check so that the text poly is in the same direction,
    and also filter some invalid polygons
    :param polys:
    :param tags:
    :return:
    '''
    (h, w) = xxx_todo_changeme
    if polys.shape[0] == 0:
        return polys
    polys[:, :, 0] = np.clip(polys[:, :, 0], 0, w - 1)
    polys[:, :, 1] = np.clip(polys[:, :, 1], 0, h - 1)

    validated_polys = []
    validated_tags = []

    # 判断四边形的点时针方向,以及是否是有效四边形
    for poly, tag in zip(polys, tags):
        p_area = polygon_area(poly)
        if abs(p_area) < 1:
            # print poly
            print('invalid poly')
            continue
        if p_area > 0:
            print('poly in wrong direction')
            poly = poly[(0, 3, 2, 1), :]
        validated_polys.append(poly)
        validated_tags.append(tag)
    return np.array(validated_polys), np.array(validated_tags)


def crop_area(im, polys, tags, crop_background=False, max_tries=100):
    '''
    make random crop from the input image
    :param im:
    :param polys:
    :param tags:
    :param crop_background:
    :param max_tries:
    :return:
    '''
    h, w, _ = im.shape
    pad_h = h // 10
    pad_w = w // 10
    h_array = np.zeros((h + pad_h * 2), dtype=np.int32)
    w_array = np.zeros((w + pad_w * 2), dtype=np.int32)
    for poly in polys:
        poly = np.round(poly, decimals=0).astype(np.int32)
        minx = np.min(poly[:, 0])
        maxx = np.max(poly[:, 0])
        w_array[minx + pad_w:maxx + pad_w] = 1
        miny = np.min(poly[:, 1])
        maxy = np.max(poly[:, 1])
        h_array[miny + pad_h:maxy + pad_h] = 1
    # ensure the cropped area not across a text,保证裁剪区域不能与文本交叉
    h_axis = np.where(h_array == 0)[0]
    w_axis = np.where(w_array == 0)[0]
    if len(h_axis) == 0 or len(w_axis) == 0:
        return im, polys, tags
    for i in range(max_tries):  # 试验50次
        xx = np.random.choice(w_axis, size=2)
        xmin = np.min(xx) - pad_w
        xmax = np.max(xx) - pad_w
        xmin = np.clip(xmin, 0, w - 1)
        xmax = np.clip(xmax, 0, w - 1)
        yy = np.random.choice(h_axis, size=2)
        ymin = np.min(yy) - pad_h
        ymax = np.max(yy) - pad_h
        ymin = np.clip(ymin, 0, h - 1)
        ymax = np.clip(ymax, 0, h - 1)
        if xmax - xmin < cfg.min_crop_side_ratio * w or ymax - ymin < cfg.min_crop_side_ratio * h:
            # area too small
            continue
        if polys.shape[0] != 0:
            poly_axis_in_area = (polys[:, :, 0] >= xmin) & (polys[:, :, 0] <= xmax) \
                                & (polys[:, :, 1] >= ymin) & (polys[:, :, 1] <= ymax)
            selected_polys = np.where(np.sum(poly_axis_in_area, axis=1) == 4)[0]
        else:
            selected_polys = []
        if len(selected_polys) == 0:
            # no text in this area
            if crop_background:
                return im[ymin:ymax + 1, xmin:xmax + 1, :], polys[selected_polys], tags[selected_polys]
            else:
                continue
        im = im[ymin:ymax + 1, xmin:xmax + 1, :]
        polys = polys[selected_polys]
        tags = tags[selected_polys]
        polys[:, :, 0] -= xmin
        polys[:, :, 1] -= ymin
        return im, polys, tags

    return im, polys, tags


def shrink_poly(poly, r):
    '''
    fit a poly inside the origin poly, maybe bugs here...
    used for generate the score map
    :param poly: the text poly
    :param r: r in the paper
    :return: the shrinked poly
    '''
    # shrink ratio
    R = 0.3
    # find the longer pair
    if np.linalg.norm(poly[0] - poly[1]) + np.linalg.norm(poly[2] - poly[3]) > \
                    np.linalg.norm(poly[0] - poly[3]) + np.linalg.norm(poly[1] - poly[2]):
        # first move (p0, p1), (p2, p3), then (p0, p3), (p1, p2)
        ## p0, p1
        theta = np.arctan2((poly[1][1] - poly[0][1]), (poly[1][0] - poly[0][0]))
        poly[0][0] += R * r[0] * np.cos(theta)
        poly[0][1] += R * r[0] * np.sin(theta)
        poly[1][0] -= R * r[1] * np.cos(theta)
        poly[1][1] -= R * r[1] * np.sin(theta)
        ## p2, p3
        theta = np.arctan2((poly[2][1] - poly[3][1]), (poly[2][0] - poly[3][0]))
        poly[3][0] += R * r[3] * np.cos(theta)
        poly[3][1] += R * r[3] * np.sin(theta)
        poly[2][0] -= R * r[2] * np.cos(theta)
        poly[2][1] -= R * r[2] * np.sin(theta)
        ## p0, p3
        theta = np.arctan2((poly[3][0] - poly[0][0]), (poly[3][1] - poly[0][1]))
        poly[0][0] += R * r[0] * np.sin(theta)
        poly[0][1] += R * r[0] * np.cos(theta)
        poly[3][0] -= R * r[3] * np.sin(theta)
        poly[3][1] -= R * r[3] * np.cos(theta)
        ## p1, p2
        theta = np.arctan2((poly[2][0] - poly[1][0]), (poly[2][1] - poly[1][1]))
        poly[1][0] += R * r[1] * np.sin(theta)
        poly[1][1] += R * r[1] * np.cos(theta)
        poly[2][0] -= R * r[2] * np.sin(theta)
        poly[2][1] -= R * r[2] * np.cos(theta)
    else:
        ## p0, p3
        # print poly
        theta = np.arctan2((poly[3][0] - poly[0][0]), (poly[3][1] - poly[0][1]))
        poly[0][0] += R * r[0] * np.sin(theta)
        poly[0][1] += R * r[0] * np.cos(theta)
        poly[3][0] -= R * r[3] * np.sin(theta)
        poly[3][1] -= R * r[3] * np.cos(theta)
        ## p1, p2
        theta = np.arctan2((poly[2][0] - poly[1][0]), (poly[2][1] - poly[1][1]))
        poly[1][0] += R * r[1] * np.sin(theta)
        poly[1][1] += R * r[1] * np.cos(theta)
        poly[2][0] -= R * r[2] * np.sin(theta)
        poly[2][1] -= R * r[2] * np.cos(theta)
        ## p0, p1
        theta = np.arctan2((poly[1][1] - poly[0][1]), (poly[1][0] - poly[0][0]))
        poly[0][0] += R * r[0] * np.cos(theta)
        poly[0][1] += R * r[0] * np.sin(theta)
        poly[1][0] -= R * r[1] * np.cos(theta)
        poly[1][1] -= R * r[1] * np.sin(theta)
        ## p2, p3
        theta = np.arctan2((poly[2][1] - poly[3][1]), (poly[2][0] - poly[3][0]))
        poly[3][0] += R * r[3] * np.cos(theta)
        poly[3][1] += R * r[3] * np.sin(theta)
        poly[2][0] -= R * r[2] * np.cos(theta)
        poly[2][1] -= R * r[2] * np.sin(theta)
    return poly


# def point_dist_to_line(p1, p2, p3):
#     # compute the distance from p3 to p1-p2
#     return np.linalg.norm(np.cross(p2 - p1, p1 - p3)) / np.linalg.norm(p2 - p1)


# 点p3到直线p12的距离
def point_dist_to_line(p1, p2, p3):
    # compute the distance from p3 to p1-p2
    # return np.linalg.norm(np.cross(p2 - p1, p1 - p3)) / np.linalg.norm(p2 - p1)
    a = np.linalg.norm(p1 - p2)
    b = np.linalg.norm(p2 - p3)
    c = np.linalg.norm(p3 - p1)
    s = (a + b + c) / 2.0
    area = np.abs((s * (s - a) * (s - b) * (s - c))) ** 0.5
    if a < 1.0:
        return (b + c) / 2.0
    return 2 * area / a


def fit_line(p1, p2):
    # fit a line ax+by+c = 0
    if p1[0] == p1[1]:
        return [1., 0., -p1[0]]
    else:
        [k, b] = np.polyfit(p1, p2, deg=1)
        return [k, -1., b]


def line_cross_point(line1, line2):
    # line1 0= ax+by+c, compute the cross point of line1 and line2
    if line1[0] != 0 and line1[0] == line2[0]:
        print('Cross point does not exist')
        return None
    if line1[0] == 0 and line2[0] == 0:
        print('Cross point does not exist')
        return None
    if line1[1] == 0:
        x = -line1[2]
        y = line2[0] * x + line2[2]
    elif line2[1] == 0:
        x = -line2[2]
        y = line1[0] * x + line1[2]
    else:
        k1, _, b1 = line1
        k2, _, b2 = line2
        x = -(b1 - b2) / (k1 - k2)
        y = k1 * x + b1
    return np.array([x, y], dtype=np.float32)


def line_verticle(line, point):
    # get the verticle line from line across point
    if line[1] == 0:
        verticle = [0, -1, point[1]]
    else:
        if line[0] == 0:
            verticle = [1, 0, -point[0]]
        else:
            verticle = [-1. / line[0], -1, point[1] - (-1 / line[0] * point[0])]
    return verticle


def rectangle_from_parallelogram(poly):
    '''
    fit a rectangle from a parallelogram
    :param poly:
    :return:
    '''
    p0, p1, p2, p3 = poly
    angle_p0 = np.arccos(np.dot(p1 - p0, p3 - p0) / (np.linalg.norm(p0 - p1) * np.linalg.norm(p3 - p0)))
    if angle_p0 < 0.5 * np.pi:
        if np.linalg.norm(p0 - p1) > np.linalg.norm(p0 - p3):
            # p0 and p2
            ## p0
            p2p3 = fit_line([p2[0], p3[0]], [p2[1], p3[1]])
            p2p3_verticle = line_verticle(p2p3, p0)

            new_p3 = line_cross_point(p2p3, p2p3_verticle)
            ## p2
            p0p1 = fit_line([p0[0], p1[0]], [p0[1], p1[1]])
            p0p1_verticle = line_verticle(p0p1, p2)

            new_p1 = line_cross_point(p0p1, p0p1_verticle)
            return np.array([p0, new_p1, p2, new_p3], dtype=np.float32)
        else:
            p1p2 = fit_line([p1[0], p2[0]], [p1[1], p2[1]])
            p1p2_verticle = line_verticle(p1p2, p0)

            new_p1 = line_cross_point(p1p2, p1p2_verticle)
            p0p3 = fit_line([p0[0], p3[0]], [p0[1], p3[1]])
            p0p3_verticle = line_verticle(p0p3, p2)

            new_p3 = line_cross_point(p0p3, p0p3_verticle)
            return np.array([p0, new_p1, p2, new_p3], dtype=np.float32)
    else:
        if np.linalg.norm(p0 - p1) > np.linalg.norm(p0 - p3):
            # p1 and p3
            ## p1
            p2p3 = fit_line([p2[0], p3[0]], [p2[1], p3[1]])
            p2p3_verticle = line_verticle(p2p3, p1)

            new_p2 = line_cross_point(p2p3, p2p3_verticle)
            ## p3
            p0p1 = fit_line([p0[0], p1[0]], [p0[1], p1[1]])
            p0p1_verticle = line_verticle(p0p1, p3)

            new_p0 = line_cross_point(p0p1, p0p1_verticle)
            return np.array([new_p0, p1, new_p2, p3], dtype=np.float32)
        else:
            p0p3 = fit_line([p0[0], p3[0]], [p0[1], p3[1]])
            p0p3_verticle = line_verticle(p0p3, p1)

            new_p0 = line_cross_point(p0p3, p0p3_verticle)
            p1p2 = fit_line([p1[0], p2[0]], [p1[1], p2[1]])
            p1p2_verticle = line_verticle(p1p2, p3)

            new_p2 = line_cross_point(p1p2, p1p2_verticle)
            return np.array([new_p0, p1, new_p2, p3], dtype=np.float32)


def sort_rectangle(poly):
    # sort the four coordinates of the polygon, points in poly should be sorted clockwise
    # First find the lowest point
    p_lowest = np.argmax(poly[:, 1])
    if np.count_nonzero(poly[:, 1] == poly[p_lowest, 1]) == 2:
        # 底边平行于X轴, 那么p0为左上角 - if the bottom line is parallel to x-axis, then p0 must be the upper-left corner
        p0_index = np.argmin(np.sum(poly, axis=1))
        p1_index = (p0_index + 1) % 4
        p2_index = (p0_index + 2) % 4
        p3_index = (p0_index + 3) % 4
        return poly[[p0_index, p1_index, p2_index, p3_index]], 0.
    else:
        # 找到最低点右边的点 - find the point that sits right to the lowest point
        p_lowest_right = (p_lowest - 1) % 4
        p_lowest_left = (p_lowest + 1) % 4
        angle = np.arctan(
            -(poly[p_lowest][1] - poly[p_lowest_right][1]) / (poly[p_lowest][0] - poly[p_lowest_right][0]))
        # assert angle > 0
        if angle <= 0:
            print(angle, poly[p_lowest], poly[p_lowest_right])
        if angle / np.pi * 180 > 45:
            # 这个点为p2 - this point is p2
            p2_index = p_lowest
            p1_index = (p2_index - 1) % 4
            p0_index = (p2_index - 2) % 4
            p3_index = (p2_index + 1) % 4
            return poly[[p0_index, p1_index, p2_index, p3_index]], -(np.pi / 2 - angle)
        else:
            # 这个点为p3 - this point is p3
            p3_index = p_lowest
            p0_index = (p3_index + 1) % 4
            p1_index = (p3_index + 2) % 4
            p2_index = (p3_index + 3) % 4
            return poly[[p0_index, p1_index, p2_index, p3_index]], angle


def restore_rectangle_rbox(origin, geometry):
    d = geometry[:, :4]
    angle = geometry[:, 4]
    # for angle > 0
    origin_0 = origin[angle >= 0]
    d_0 = d[angle >= 0]
    angle_0 = angle[angle >= 0]
    if origin_0.shape[0] > 0:
        p = np.array([np.zeros(d_0.shape[0]), -d_0[:, 0] - d_0[:, 2],
                      d_0[:, 1] + d_0[:, 3], -d_0[:, 0] - d_0[:, 2],
                      d_0[:, 1] + d_0[:, 3], np.zeros(d_0.shape[0]),
                      np.zeros(d_0.shape[0]), np.zeros(d_0.shape[0]),
                      d_0[:, 3], -d_0[:, 2]])
        p = p.transpose((1, 0)).reshape((-1, 5, 2))  # N*5*2

        rotate_matrix_x = np.array([np.cos(angle_0), np.sin(angle_0)]).transpose((1, 0))
        rotate_matrix_x = np.repeat(rotate_matrix_x, 5, axis=1).reshape(-1, 2, 5).transpose((0, 2, 1))  # N*5*2

        rotate_matrix_y = np.array([-np.sin(angle_0), np.cos(angle_0)]).transpose((1, 0))
        rotate_matrix_y = np.repeat(rotate_matrix_y, 5, axis=1).reshape(-1, 2, 5).transpose((0, 2, 1))

        p_rotate_x = np.sum(rotate_matrix_x * p, axis=2)[:, :, np.newaxis]  # N*5*1
        p_rotate_y = np.sum(rotate_matrix_y * p, axis=2)[:, :, np.newaxis]  # N*5*1

        p_rotate = np.concatenate([p_rotate_x, p_rotate_y], axis=2)  # N*5*2

        p3_in_origin = origin_0 - p_rotate[:, 4, :]
        new_p0 = p_rotate[:, 0, :] + p3_in_origin  # N*2
        new_p1 = p_rotate[:, 1, :] + p3_in_origin
        new_p2 = p_rotate[:, 2, :] + p3_in_origin
        new_p3 = p_rotate[:, 3, :] + p3_in_origin

        new_p_0 = np.concatenate([new_p0[:, np.newaxis, :], new_p1[:, np.newaxis, :],
                                  new_p2[:, np.newaxis, :], new_p3[:, np.newaxis, :]], axis=1)  # N*4*2
    else:
        new_p_0 = np.zeros((0, 4, 2))
    # for angle < 0
    origin_1 = origin[angle < 0]
    d_1 = d[angle < 0]
    angle_1 = angle[angle < 0]
    if origin_1.shape[0] > 0:
        p = np.array([-d_1[:, 1] - d_1[:, 3], -d_1[:, 0] - d_1[:, 2],
                      np.zeros(d_1.shape[0]), -d_1[:, 0] - d_1[:, 2],
                      np.zeros(d_1.shape[0]), np.zeros(d_1.shape[0]),
                      -d_1[:, 1] - d_1[:, 3], np.zeros(d_1.shape[0]),
                      -d_1[:, 1], -d_1[:, 2]])
        p = p.transpose((1, 0)).reshape((-1, 5, 2))  # N*5*2

        rotate_matrix_x = np.array([np.cos(-angle_1), -np.sin(-angle_1)]).transpose((1, 0))
        rotate_matrix_x = np.repeat(rotate_matrix_x, 5, axis=1).reshape(-1, 2, 5).transpose((0, 2, 1))  # N*5*2

        rotate_matrix_y = np.array([np.sin(-angle_1), np.cos(-angle_1)]).transpose((1, 0))
        rotate_matrix_y = np.repeat(rotate_matrix_y, 5, axis=1).reshape(-1, 2, 5).transpose((0, 2, 1))

        p_rotate_x = np.sum(rotate_matrix_x * p, axis=2)[:, :, np.newaxis]  # N*5*1
        p_rotate_y = np.sum(rotate_matrix_y * p, axis=2)[:, :, np.newaxis]  # N*5*1

        p_rotate = np.concatenate([p_rotate_x, p_rotate_y], axis=2)  # N*5*2

        p3_in_origin = origin_1 - p_rotate[:, 4, :]
        new_p0 = p_rotate[:, 0, :] + p3_in_origin  # N*2
        new_p1 = p_rotate[:, 1, :] + p3_in_origin
        new_p2 = p_rotate[:, 2, :] + p3_in_origin
        new_p3 = p_rotate[:, 3, :] + p3_in_origin

        new_p_1 = np.concatenate([new_p0[:, np.newaxis, :], new_p1[:, np.newaxis, :],
                                  new_p2[:, np.newaxis, :], new_p3[:, np.newaxis, :]], axis=1)  # N*4*2
    else:
        new_p_1 = np.zeros((0, 4, 2))
    return np.concatenate([new_p_0, new_p_1])


def restore_rectangle(origin, geometry):
    return restore_rectangle_rbox(origin, geometry)


def generate_rbox(im_size, polys, tags):
    h, w = im_size
    poly_mask = np.zeros((h, w), dtype=np.uint8)
    score_map = np.zeros((h, w), dtype=np.uint8)
    geo_map = np.zeros((h, w, 5), dtype=np.float32)
    # mask used during traning, to ignore some hard areas,用于忽略那些过小的文本
    training_mask = np.ones((h, w), dtype=np.uint8)
    for poly_idx, poly_tag in enumerate(zip(polys, tags)):
        poly = poly_tag[0]
        tag = poly_tag[1]

        # 对每个顶点,找到经过他的两条边中较短的那条
        r = [None, None, None, None]
        for i in range(4):
            r[i] = min(np.linalg.norm(poly[i] - poly[(i + 1) % 4]),
                       np.linalg.norm(poly[i] - poly[(i - 1) % 4]))
        # score map
        # 放缩边框为之前的0.3倍,并对边框对应score图中的位置进行填充
        shrinked_poly = shrink_poly(poly.copy(), r).astype(np.int32)[np.newaxis, :, :]
        cv2.fillPoly(score_map, shrinked_poly, 1)
        cv2.fillPoly(poly_mask, shrinked_poly, poly_idx + 1)
        # if the poly is too small, then ignore it during training
        # 如果文本框标签太小或者txt中没具体标记是什么内容,即*或者###,则加掩模,训练时忽略该部分
        poly_h = min(np.linalg.norm(poly[0] - poly[3]), np.linalg.norm(poly[1] - poly[2]))
        poly_w = min(np.linalg.norm(poly[0] - poly[1]), np.linalg.norm(poly[2] - poly[3]))
        if min(poly_h, poly_w) < cfg.min_text_size:
            cv2.fillPoly(training_mask, poly.astype(np.int32)[np.newaxis, :, :], 0)
        if tag:
            cv2.fillPoly(training_mask, poly.astype(np.int32)[np.newaxis, :, :], 0)

        # 当前新加入的文本框区域像素点
        xy_in_poly = np.argwhere(poly_mask == (poly_idx + 1))
        # if geometry == 'RBOX':
        # 对任意两个顶点的组合生成一个平行四边形 - generate a parallelogram for any combination of two vertices
        fitted_parallelograms = []
        for i in range(4):
            # 选中p0和p1的连线边,生成两个平行四边形
            p0 = poly[i]
            p1 = poly[(i + 1) % 4]
            p2 = poly[(i + 2) % 4]
            p3 = poly[(i + 3) % 4]
            # 拟合ax+by+c=0
            edge = fit_line([p0[0], p1[0]], [p0[1], p1[1]])
            backward_edge = fit_line([p0[0], p3[0]], [p0[1], p3[1]])
            forward_edge = fit_line([p1[0], p2[0]], [p1[1], p2[1]])
            # 通过另外两个点距离edge的距离,来决定edge对应的平行线应该过p2还是p3
            if point_dist_to_line(p0, p1, p2) > point_dist_to_line(p0, p1, p3):
                # 平行线经过p2 - parallel lines through p2
                if edge[1] == 0:
                    edge_opposite = [1, 0, -p2[0]]
                else:
                    edge_opposite = [edge[0], -1, p2[1] - edge[0] * p2[0]]
            else:
                # 经过p3 - after p3
                if edge[1] == 0:
                    edge_opposite = [1, 0, -p3[0]]
                else:
                    edge_opposite = [edge[0], -1, p3[1] - edge[0] * p3[0]]
            # move forward edge
            new_p0 = p0
            new_p1 = p1
            new_p2 = p2
            new_p3 = p3
            new_p2 = line_cross_point(forward_edge, edge_opposite)
            if point_dist_to_line(p1, new_p2, p0) > point_dist_to_line(p1, new_p2, p3):
                # across p0
                if forward_edge[1] == 0:
                    forward_opposite = [1, 0, -p0[0]]
                else:
                    forward_opposite = [forward_edge[0], -1, p0[1] - forward_edge[0] * p0[0]]
            else:
                # across p3
                if forward_edge[1] == 0:
                    forward_opposite = [1, 0, -p3[0]]
                else:
                    forward_opposite = [forward_edge[0], -1, p3[1] - forward_edge[0] * p3[0]]
            new_p0 = line_cross_point(forward_opposite, edge)
            new_p3 = line_cross_point(forward_opposite, edge_opposite)
            fitted_parallelograms.append([new_p0, new_p1, new_p2, new_p3, new_p0])
            # or move backward edge
            new_p0 = p0
            new_p1 = p1
            new_p2 = p2
            new_p3 = p3
            new_p3 = line_cross_point(backward_edge, edge_opposite)
            if point_dist_to_line(p0, p3, p1) > point_dist_to_line(p0, p3, p2):
                # across p1
                if backward_edge[1] == 0:
                    backward_opposite = [1, 0, -p1[0]]
                else:
                    backward_opposite = [backward_edge[0], -1, p1[1] - backward_edge[0] * p1[0]]
            else:
                # across p2
                if backward_edge[1] == 0:
                    backward_opposite = [1, 0, -p2[0]]
                else:
                    backward_opposite = [backward_edge[0], -1, p2[1] - backward_edge[0] * p2[0]]
            new_p1 = line_cross_point(backward_opposite, edge)
            new_p2 = line_cross_point(backward_opposite, edge_opposite)
            fitted_parallelograms.append([new_p0, new_p1, new_p2, new_p3, new_p0])

        # 选定面积最小的平行四边形
        areas = [Polygon(t).area for t in fitted_parallelograms]
        parallelogram = np.array(fitted_parallelograms[np.argmin(areas)][:-1], dtype=np.float32)
        # sort thie polygon
        parallelogram_coord_sum = np.sum(parallelogram, axis=1)
        min_coord_idx = np.argmin(parallelogram_coord_sum)
        parallelogram = parallelogram[
            [min_coord_idx, (min_coord_idx + 1) % 4, (min_coord_idx + 2) % 4, (min_coord_idx + 3) % 4]]

        # 得到外包矩形即旋转角
        rectange = rectangle_from_parallelogram(parallelogram)
        rectange, rotate_angle = sort_rectangle(rectange)

        p0_rect, p1_rect, p2_rect, p3_rect = rectange
        # 对当前新加入的文本框区域像素点,根据其到矩形四边的距离修改geo_map
        for y, x in xy_in_poly:
            point = np.array([x, y], dtype=np.float32)
            # top
            geo_map[y, x, 0] = point_dist_to_line(p0_rect, p1_rect, point)
            # right
            geo_map[y, x, 1] = point_dist_to_line(p1_rect, p2_rect, point)
            # down
            geo_map[y, x, 2] = point_dist_to_line(p2_rect, p3_rect, point)
            # left
            geo_map[y, x, 3] = point_dist_to_line(p3_rect, p0_rect, point)
            # angle
            geo_map[y, x, 4] = rotate_angle
    return score_map, geo_map, training_mask


def generator(index,
              input_size=512,
              background_ratio=3. / 8,  # 纯背景样本比例
              random_scale=np.array([0.5, 1, 2.0, 3.0]),  # 提取多尺度图片信息
              image_list=None):
    try:
        im_fn = image_list[index]
        im = cv2.imread(im_fn)
        if im is None:
            print("can't find image")
            return None, None, None, None, None
        h, w, _ = im.shape
        # 所以要把gt去掉
        txt_fn = im_fn.replace(os.path.basename(im_fn).split('.')[1], 'txt')
        if not os.path.exists(txt_fn):
            print('text file {} does not exists'.format(txt_fn))
            return None, None, None, None, None
        # 加载标注框信息
        text_polys, text_tags = load_annoataion(txt_fn)

        text_polys, text_tags = check_and_validate_polys(text_polys, text_tags, (h, w))

        # random scale this image,随机选择一种尺度
        rd_scale = np.random.choice(random_scale)
        im = cv2.resize(im, dsize=None, fx=rd_scale, fy=rd_scale)
        text_polys *= rd_scale

        # random crop a area from image,3/8的选中的概率,裁剪纯背景的图片
        if np.random.rand() < background_ratio:
            # crop background
            im, text_polys, text_tags = crop_area(im, text_polys, text_tags, crop_background=True)
            if text_polys.shape[0] > 0:
                # print("cannot find background")
                return None, None, None, None, None
            # pad and resize image
            new_h, new_w, _ = im.shape
            max_h_w_i = np.max([new_h, new_w, input_size])
            im_padded = np.zeros((max_h_w_i, max_h_w_i, 3), dtype=np.uint8)
            im_padded[:new_h, :new_w, :] = im.copy()
            # 将裁剪后图片扩充成512*512的图片
            im = cv2.resize(im_padded, dsize=(input_size, input_size))
            score_map = np.zeros((input_size, input_size), dtype=np.uint8)
            geo_map_channels = 5 if cfg.geometry == 'RBOX' else 8
            geo_map = np.zeros((input_size, input_size, geo_map_channels), dtype=np.float32)
            training_mask = np.ones((input_size, input_size), dtype=np.uint8)
        else:
            # 5 / 8的选中的概率,裁剪含文本信息的图片
            im, text_polys, text_tags = crop_area(im, text_polys, text_tags, crop_background=False)
            if text_polys.shape[0] == 0:
                # print("cannot find txt ground")
                return None, None, None, None, None
            h, w, _ = im.shape
            # pad the image to the training input size or the longer side of image
            new_h, new_w, _ = im.shape
            max_h_w_i = np.max([new_h, new_w, input_size])
            im_padded = np.zeros((max_h_w_i, max_h_w_i, 3), dtype=np.uint8)
            im_padded[:new_h, :new_w, :] = im.copy()
            im = im_padded
            # resize the image to input size
            # 填充,resize图像至设定尺寸
            new_h, new_w, _ = im.shape
            resize_h = input_size
            resize_w = input_size
            im = cv2.resize(im, dsize=(resize_w, resize_h))
            # 将文本框坐标标签等比例修改
            resize_ratio_3_x = resize_w / float(new_w)
            resize_ratio_3_y = resize_h / float(new_h)
            text_polys[:, :, 0] *= resize_ratio_3_x
            text_polys[:, :, 1] *= resize_ratio_3_y
            new_h, new_w, _ = im.shape
            score_map, geo_map, training_mask = generate_rbox((new_h, new_w), text_polys, text_tags)

        # 将一个样本的样本内容和标签信息append
        images = im[:,:,::-1].astype(np.float32)
        # 文件名加入列表
        image_fns = im_fn
        # 512*512取提取四分之一行列
        score_maps = score_map[::4, ::4, np.newaxis].astype(np.float32)
        geo_maps = geo_map[::4, ::4, :].astype(np.float32)
        training_masks = training_mask[::4, ::4, np.newaxis].astype(np.float32)
        # 符合一个样本之后输出
        return images, image_fns, score_maps, geo_maps, training_masks

    except Exception as e:
        import traceback
        traceback.print_exc()

        # print("Exception is exist!")
        return None, None, None, None, None