File size: 10,124 Bytes
01bb3bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284

import torch
import os
from torch.nn import init
import cv2
import numpy as np
import time
import requests

from IndicPhotoOCR.detection import east_config as cfg
from IndicPhotoOCR.detection import east_preprossing as preprossing
from IndicPhotoOCR.detection import east_locality_aware_nms as locality_aware_nms



# Example usage:
model_info = {
    "east": {
        "paths": [ cfg.checkpoint, cfg.pretrained_basemodel_path],
        "urls" : ["https://github.com/anikde/STocr/releases/download/e0.1.0/epoch_990_checkpoint.pth.tar", "https://github.com/anikde/STocr/releases/download/e0.1.0/mobilenet_v2.pth.tar"]
    },
}

class ModelManager:
    def __init__(self):
        # self.root_model_dir = "bharatOCR/detection/"
        pass

    def download_model(self, url, path):
        response = requests.get(url, stream=True)
        if response.status_code == 200:
            with open(path, 'wb') as f:
                for chunk in response.iter_content(chunk_size=8192):
                    if chunk:  # Filter out keep-alive chunks
                        f.write(chunk)
            print(f"Downloaded: {path}")
        else:
            print(f"Failed to download from {url}")

    def ensure_model(self, model_name):
        model_paths = model_info[model_name]["paths"]  # Changed to handle multiple paths
        urls = model_info[model_name]["urls"]          # Changed to handle multiple URLs


        for model_path, url in zip(model_paths, urls):
            # full_model_path = os.path.join(self.root_model_dir, model_path)

            # Ensure the model path directory exists
            os.makedirs(os.path.dirname(os.path.join(*cfg.pretrained_basemodel_path.split("/"))), exist_ok=True)

            if not os.path.exists(model_path):
                print(f"Model not found locally. Downloading {model_name} from {url}...")
                self.download_model(url, model_path)
            else:
                print(f"Model already exists at {model_path}. No need to download.")



# # Initialize ModelManager and ensure Hindi models are downloaded
model_manager = ModelManager()
model_manager.ensure_model("east")



def init_weights(m_list, init_type=cfg.init_type, gain=0.02):
    print("EAST <==> Prepare <==> Init Network'{}' <==> Begin".format(cfg.init_type))
    # this will apply to each layer
    for m in m_list:
        classname = m.__class__.__name__
        if hasattr(m, 'weight') and (classname.find('Conv') != -1 or classname.find('Linear') != -1):
            if init_type == 'normal':
                init.normal_(m.weight.data, 0.0, gain)
            elif init_type == 'xavier':
                init.xavier_normal_(m.weight.data, gain=gain)
            elif init_type == 'kaiming':
                init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')  # good for relu
            elif init_type == 'orthogonal':
                init.orthogonal_(m.weight.data, gain=gain)
            else:
                raise NotImplementedError('initialization method [%s] is not implemented' % init_type)

            if hasattr(m, 'bias') and m.bias is not None:
                init.constant_(m.bias.data, 0.0)
        elif classname.find('BatchNorm2d') != -1:
            init.normal_(m.weight.data, 1.0, gain)
            init.constant_(m.bias.data, 0.0)

    print("EAST <==> Prepare <==> Init Network'{}' <==> Done".format(cfg.init_type))


def Loading_checkpoint(model, optimizer, scheduler, filename='checkpoint.pth.tar'):
    """[summary]
    [description]
    Arguments:
        state {[type]} -- [description] a dict describe some params
    Keyword Arguments:
        filename {str} -- [description] (default: {'checkpoint.pth.tar'})
    """
    weightpath = os.path.abspath(cfg.checkpoint)
    print("EAST <==> Prepare <==> Loading checkpoint '{}' <==> Begin".format(weightpath))
    checkpoint = torch.load(weightpath)
    start_epoch = checkpoint['epoch'] + 1
    model.load_state_dict(checkpoint['state_dict'])
    optimizer.load_state_dict(checkpoint['optimizer'])
    scheduler.load_state_dict(checkpoint['scheduler'])
    print("EAST <==> Prepare <==> Loading checkpoint '{}' <==> Done".format(weightpath))

    return start_epoch


def save_checkpoint(epoch, model, optimizer, scheduler, filename='checkpoint.pth.tar'):
    """[summary]
    [description]
    Arguments:
        state {[type]} -- [description] a dict describe some params
    Keyword Arguments:
        filename {str} -- [description] (default: {'checkpoint.pth.tar'})
    """
    print('EAST <==> Save weight - epoch {} <==> Begin'.format(epoch))
    state = {
        'epoch': epoch,
        'state_dict': model.state_dict(),
        'optimizer': optimizer.state_dict(),
        'scheduler': scheduler.state_dict()
    }
    weight_dir = cfg.save_model_path
    if not os.path.exists(weight_dir):
        os.mkdir(weight_dir)
    filename = 'epoch_' + str(epoch) + '_checkpoint.pth.tar'
    file_path = os.path.join(weight_dir, filename)
    torch.save(state, file_path)
    print('EAST <==> Save weight - epoch {} <==> Done'.format(epoch))


class Regularization(torch.nn.Module):
    def __init__(self, model, weight_decay, p=2):
        super(Regularization, self).__init__()
        if weight_decay < 0:
            print("param weight_decay can not <0")
            exit(0)
        self.model = model
        self.weight_decay = weight_decay
        self.p = p
        self.weight_list = self.get_weight(model)
        # self.weight_info(self.weight_list)

    def to(self, device):
        self.device = device
        super().to(device)
        return self

    def forward(self, model):
        self.weight_list = self.get_weight(model)  # 获得最新的权重
        reg_loss = self.regularization_loss(self.weight_list, self.weight_decay, p=self.p)
        return reg_loss

    def get_weight(self, model):
        weight_list = []
        for name, param in model.named_parameters():
            if 'weight' in name:
                weight = (name, param)
                weight_list.append(weight)
        return weight_list

    def regularization_loss(self, weight_list, weight_decay, p=2):
        reg_loss = 0
        for name, w in weight_list:
            l2_reg = torch.norm(w, p=p)
            reg_loss = reg_loss + l2_reg

        reg_loss = weight_decay * reg_loss
        return reg_loss

    def weight_info(self, weight_list):
        print("---------------regularization weight---------------")
        for name, w in weight_list:
            print(name)
        print("---------------------------------------------------")


def resize_image(im, max_side_len=2400):
    '''
    resize image to a size multiple of 32 which is required by the network
    :param im: the resized image
    :param max_side_len: limit of max image size to avoid out of memory in gpu
    :return: the resized image and the resize ratio
    '''
    h, w, _ = im.shape

    resize_w = w
    resize_h = h

    # limit the max side
    """
    if max(resize_h, resize_w) > max_side_len:
        ratio = float(max_side_len) / resize_h if resize_h > resize_w else float(max_side_len) / resize_w
    else:
        ratio = 1.

    resize_h = int(resize_h * ratio)
    resize_w = int(resize_w * ratio)
    """

    resize_h = resize_h if resize_h % 32 == 0 else (resize_h // 32 - 1) * 32
    resize_w = resize_w if resize_w % 32 == 0 else (resize_w // 32 - 1) * 32
    #resize_h, resize_w = 512, 512
    im = cv2.resize(im, (int(resize_w), int(resize_h)))

    ratio_h = resize_h / float(h)
    ratio_w = resize_w / float(w)

    return im, (ratio_h, ratio_w)


def detect(score_map, geo_map, timer, score_map_thresh=0.8, box_thresh=0.1, nms_thres=0.2):
    '''
    restore text boxes from score map and geo map
    :param score_map:
    :param geo_map:
    :param timer:
    :param score_map_thresh: threshhold for score map
    :param box_thresh: threshhold for boxes
    :param nms_thres: threshold for nms
    :return:
    '''

    # score_map 和 geo_map 的维数进行调整
    if len(score_map.shape) == 4:
        score_map = score_map[0, :, :, 0]
        geo_map = geo_map[0, :, :, :]
    # filter the score map
    xy_text = np.argwhere(score_map > score_map_thresh)
    # sort the text boxes via the y axis
    xy_text = xy_text[np.argsort(xy_text[:, 0])]
    # restore
    start = time.time()
    text_box_restored = preprossing.restore_rectangle(xy_text[:, ::-1] * 4,
                                                      geo_map[xy_text[:, 0], xy_text[:, 1], :])  # N*4*2
    # print('{} text boxes before nms'.format(text_box_restored.shape[0]))
    boxes = np.zeros((text_box_restored.shape[0], 9), dtype=np.float32)
    boxes[:, :8] = text_box_restored.reshape((-1, 8))
    boxes[:, 8] = score_map[xy_text[:, 0], xy_text[:, 1]]
    timer['restore'] = time.time() - start
    # nms part
    start = time.time()
    boxes = locality_aware_nms.nms_locality(boxes.astype(np.float64), nms_thres)
    timer['nms'] = time.time() - start
    # print(timer['nms'])
    if boxes.shape[0] == 0:
        return None, timer

    # here we filter some low score boxes by the average score map, this is different from the orginal paper
    for i, box in enumerate(boxes):
        mask = np.zeros_like(score_map, dtype=np.uint8)
        cv2.fillPoly(mask, box[:8].reshape((-1, 4, 2)).astype(np.int32) // 4, 1)
        boxes[i, 8] = cv2.mean(score_map, mask)[0]
    boxes = boxes[boxes[:, 8] > box_thresh]
    return boxes, timer


def sort_poly(p):
    min_axis = np.argmin(np.sum(p, axis=1))
    p = p[[min_axis, (min_axis + 1) % 4, (min_axis + 2) % 4, (min_axis + 3) % 4]]
    if abs(p[0, 0] - p[1, 0]) > abs(p[0, 1] - p[1, 1]):
        return p
    else:
        return p[[0, 3, 2, 1]]


def mean_image_subtraction(images, means=cfg.means):
    '''
    image normalization
    :param images: bs * w * h * channel
    :param means:
    :return:
    '''
    num_channels = images.data.shape[1]
    if len(means) != num_channels:
        raise ValueError('len(means) must match the number of channels')
    for i in range(num_channels):
        images.data[:, i, :, :] -= means[i]

    return images