File size: 8,142 Bytes
01bb3bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243

import torch.nn as nn
import math
import torch


from IndicPhotoOCR.detection import east_config as cfg
from IndicPhotoOCR.detection import east_utils as utils


def conv_bn(inp, oup, stride):
    return nn.Sequential(
        nn.Conv2d(inp, oup, 3, stride, 1, bias=False),
        nn.BatchNorm2d(oup),
        nn.ReLU6(inplace=True)
    )


class InvertedResidual(nn.Module):
    def __init__(self, inp, oup, stride, expand_ratio):
        super(InvertedResidual, self).__init__()
        self.stride = stride
        assert stride in [1, 2]

        hidden_dim = round(inp * expand_ratio)
        self.use_res_connect = self.stride == 1 and inp == oup

        if expand_ratio == 1:
            self.conv = nn.Sequential(
                # dw
                nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, bias=False),
                nn.BatchNorm2d(hidden_dim),
                nn.ReLU6(inplace=True),
                # pw-linear
                nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
                nn.BatchNorm2d(oup),
            )
        else:
            self.conv = nn.Sequential(
                # pw
                nn.Conv2d(inp, hidden_dim, 1, 1, 0, bias=False),
                nn.BatchNorm2d(hidden_dim),
                nn.ReLU6(inplace=True),
                # dw
                nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, bias=False),
                nn.BatchNorm2d(hidden_dim),
                nn.ReLU6(inplace=True),
                # pw-linear
                nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
                nn.BatchNorm2d(oup),
            )

    def forward(self, x):
        if self.use_res_connect:
            return x + self.conv(x)
        else:
            return self.conv(x)


class MobileNetV2(nn.Module):
    def __init__(self, width_mult=1.):
        super(MobileNetV2, self).__init__()
        block = InvertedResidual
        input_channel = 32
        last_channel = 1280
        interverted_residual_setting = [
            # t, c, n, s
            [1, 16, 1, 1],
            [6, 24, 2, 2],
            [6, 32, 3, 2],
            [6, 64, 4, 2],
            [6, 96, 3, 1],
            [6, 160, 3, 2],
            # [6, 320, 1, 1],
        ]

        # building first layer
        # assert input_size % 32 == 0
        input_channel = int(input_channel * width_mult)
        self.last_channel = int(last_channel * width_mult) if width_mult > 1.0 else last_channel
        self.features = [conv_bn(3, input_channel, 2)]
        # building inverted residual blocks
        for t, c, n, s in interverted_residual_setting:
            output_channel = int(c * width_mult)
            for i in range(n):
                if i == 0:
                    self.features.append(block(input_channel, output_channel, s, expand_ratio=t))
                else:
                    self.features.append(block(input_channel, output_channel, 1, expand_ratio=t))
                input_channel = output_channel

        # make it nn.Sequential
        self.features = nn.Sequential(*self.features)

        self._initialize_weights()

    def forward(self, x):
        x = self.features(x)
        # x = x.mean(3).mean(2)
        # x = self.classifier(x)
        return x

    def _initialize_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(0, math.sqrt(2. / n))
                if m.bias is not None:
                    m.bias.data.zero_()
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()
            elif isinstance(m, nn.Linear):
                n = m.weight.size(1)
                m.weight.data.normal_(0, 0.01)
                m.bias.data.zero_()


def mobilenet(pretrained=True, **kwargs):
    """
    Constructs a ResNet-50 model.
    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
    model = MobileNetV2()
    if pretrained:
        model_dict = model.state_dict()
        pretrained_dict = torch.load(cfg.pretrained_basemodel_path,map_location=torch.device('cpu'), weights_only=True)
        pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
        model_dict.update(pretrained_dict)
        model.load_state_dict(model_dict)
        # state_dict = torch.load(cfg.pretrained_basemodel_path)  # add map_location='cpu' if no gpu
        # model.load_state_dict(state_dict)

    return model


class East(nn.Module):
    def __init__(self):
        super(East, self).__init__()
        self.mobilenet = mobilenet(True)
        # self.si for stage i
        self.s1 = nn.Sequential(*list(self.mobilenet.children())[0][0:4])
        self.s2 = nn.Sequential(*list(self.mobilenet.children())[0][4:7])
        self.s3 = nn.Sequential(*list(self.mobilenet.children())[0][7:14])
        self.s4 = nn.Sequential(*list(self.mobilenet.children())[0][14:17])

        self.conv1 = nn.Conv2d(160+96, 128, 1)
        self.bn1 = nn.BatchNorm2d(128)
        self.relu1 = nn.ReLU()

        self.conv2 = nn.Conv2d(128, 128, 3, padding=1)
        self.bn2 = nn.BatchNorm2d(128)
        self.relu2 = nn.ReLU()

        self.conv3 = nn.Conv2d(128+32, 64, 1)
        self.bn3 = nn.BatchNorm2d(64)
        self.relu3 = nn.ReLU()

        self.conv4 = nn.Conv2d(64, 64, 3, padding=1)
        self.bn4 = nn.BatchNorm2d(64)
        self.relu4 = nn.ReLU()

        self.conv5 = nn.Conv2d(64+24, 64, 1)
        self.bn5 = nn.BatchNorm2d(64)
        self.relu5 = nn.ReLU()

        self.conv6 = nn.Conv2d(64, 32, 3, padding=1)
        self.bn6 = nn.BatchNorm2d(32)
        self.relu6 = nn.ReLU()

        self.conv7 = nn.Conv2d(32, 32, 3, padding=1)
        self.bn7 = nn.BatchNorm2d(32)
        self.relu7 = nn.ReLU()

        self.conv8 = nn.Conv2d(32, 1, 1)
        self.sigmoid1 = nn.Sigmoid()
        self.conv9 = nn.Conv2d(32, 4, 1)
        self.sigmoid2 = nn.Sigmoid()
        self.conv10 = nn.Conv2d(32, 1, 1)
        self.sigmoid3 = nn.Sigmoid()
        self.unpool1 = nn.Upsample(scale_factor=2, mode='bilinear')
        self.unpool2 = nn.Upsample(scale_factor=2, mode='bilinear')
        self.unpool3 = nn.Upsample(scale_factor=2, mode='bilinear')

        # utils.init_weights([self.conv1,self.conv2,self.conv3,self.conv4,
        #                        self.conv5,self.conv6,self.conv7,self.conv8,
        #                        self.conv9,self.conv10,self.bn1,self.bn2,
        #                        self.bn3,self.bn4,self.bn5,self.bn6,self.bn7])

    def forward(self, images):
        images = utils.mean_image_subtraction(images)

        f0 = self.s1(images)
        f1 = self.s2(f0)
        f2 = self.s3(f1)
        f3 = self.s4(f2)

        # _, f = self.mobilenet(images)
        h = f3  # bs 2048 w/32 h/32
        g = (self.unpool1(h))  # bs 2048 w/16 h/16
        c = self.conv1(torch.cat((g, f2), 1))
        c = self.bn1(c)
        c = self.relu1(c)

        h = self.conv2(c)  # bs 128 w/16 h/16
        h = self.bn2(h)
        h = self.relu2(h)
        g = self.unpool2(h)  # bs 128 w/8 h/8
        c = self.conv3(torch.cat((g, f1), 1))
        c = self.bn3(c)
        c = self.relu3(c)

        h = self.conv4(c)  # bs 64 w/8 h/8
        h = self.bn4(h)
        h = self.relu4(h)
        g = self.unpool3(h)  # bs 64 w/4 h/4
        c = self.conv5(torch.cat((g, f0), 1))
        c = self.bn5(c)
        c = self.relu5(c)

        h = self.conv6(c)  # bs 32 w/4 h/4
        h = self.bn6(h)
        h = self.relu6(h)
        g = self.conv7(h)  # bs 32 w/4 h/4
        g = self.bn7(g)
        g = self.relu7(g)

        F_score = self.conv8(g)  # bs 1 w/4 h/4
        F_score = self.sigmoid1(F_score)
        geo_map = self.conv9(g)
        geo_map = self.sigmoid2(geo_map) * 512
        angle_map = self.conv10(g)
        angle_map = self.sigmoid3(angle_map)
        angle_map = (angle_map - 0.5) * math.pi / 2

        F_geometry = torch.cat((geo_map, angle_map), 1)  # bs 5 w/4 h/4

        return F_score, F_geometry


model=East()