File size: 2,558 Bytes
01bb3bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import torch.nn as nn
import torch.utils.model_zoo as model_zoo
import torchvision.models as models

model_urls = {
    'vgg11': 'https://download.pytorch.org/models/vgg11-bbd30ac9.pth',
    'vgg16': 'https://download.pytorch.org/models/vgg16-397923af.pth',
    'vgg19': 'https://download.pytorch.org/models/vgg19-dcbb9e9d.pth',
    'vgg11_bn': 'https://download.pytorch.org/models/vgg11_bn-6002323d.pth',
    'vgg16_bn': 'https://download.pytorch.org/models/vgg16_bn-6c64b313.pth',
    'vgg19_bn': 'https://download.pytorch.org/models/vgg19_bn-c79401a0.pth',
}


class VggNet(nn.Module):
    def __init__(self, name="vgg16", pretrain=True):
        super().__init__()
        if name == "vgg16":
            base_net = models.vgg16(pretrained=False)
        elif name == "vgg16_bn":
            base_net = models.vgg16_bn(pretrained=False)
        else:
            print(" base model is not support !")
        if pretrain:
            print("load the {} weight from ./cache".format(name))
            base_net.load_state_dict(model_zoo.load_url(model_urls[name], model_dir="./cache"))

        if name == "vgg16":
            self.stage1 = nn.Sequential(*[base_net.features[layer] for layer in range(0, 5)])
            self.stage2 = nn.Sequential(*[base_net.features[layer] for layer in range(5, 10)])
            self.stage3 = nn.Sequential(*[base_net.features[layer] for layer in range(10, 17)])
            self.stage4 = nn.Sequential(*[base_net.features[layer] for layer in range(17, 24)])
            self.stage5 = nn.Sequential(*[base_net.features[layer] for layer in range(24, 31)])
        elif name == "vgg16_bn":
            self.stage1 = nn.Sequential(*[base_net.features[layer] for layer in range(0, 7)])
            self.stage2 = nn.Sequential(*[base_net.features[layer] for layer in range(7, 14)])
            self.stage3 = nn.Sequential(*[base_net.features[layer] for layer in range(14, 24)])
            self.stage4 = nn.Sequential(*[base_net.features[layer] for layer in range(24, 34)])
            self.stage5 = nn.Sequential(*[base_net.features[layer] for layer in range(34, 44)])

    def forward(self, x):
        C1 = self.stage1(x)
        C2 = self.stage2(C1)
        C3 = self.stage3(C2)
        C4 = self.stage4(C3)
        C5 = self.stage5(C4)

        return C1, C2, C3, C4, C5


if __name__ == '__main__':
    import torch
    input = torch.randn((4, 3, 512, 512))
    net = VggNet()
    C1, C2, C3, C4, C5 = net(input)
    print(C1.size())
    print(C2.size())
    print(C3.size())
    print(C4.size())
    print(C5.size())