File size: 5,384 Bytes
01bb3bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
# -*- coding: utf-8 -*-
# @Time    : 10/1/21
# @Author  : GXYM
import torch
import torch.nn as nn
from cfglib.config import config as cfg
from network.Seg_loss import SegmentLoss
from network.Reg_loss import PolyMatchingLoss


class TextLoss(nn.Module):

    def __init__(self):
        super().__init__()
        self.MSE_loss = torch.nn.MSELoss(reduce=False, size_average=False)
        self.BCE_loss = torch.nn.BCELoss(reduce=False, size_average=False)
        self.PolyMatchingLoss = PolyMatchingLoss(cfg.num_points, cfg.device)
        self.KL_loss = torch.nn.KLDivLoss(reduce=False, size_average=False)

    @staticmethod
    def single_image_loss(pre_loss, loss_label):
        batch_size = pre_loss.shape[0]
        sum_loss = torch.mean(pre_loss.view(-1)) * 0
        pre_loss = pre_loss.view(batch_size, -1)
        loss_label = loss_label.view(batch_size, -1)
        eps = 0.001
        for i in range(batch_size):
            average_number = 0
            positive_pixel = len(pre_loss[i][(loss_label[i] >= eps)])
            average_number += positive_pixel
            if positive_pixel != 0:
                posi_loss = torch.mean(pre_loss[i][(loss_label[i] >= eps)])
                sum_loss += posi_loss
                if len(pre_loss[i][(loss_label[i] < eps)]) < 3 * positive_pixel:
                    nega_loss = torch.mean(pre_loss[i][(loss_label[i] < eps)])
                    average_number += len(pre_loss[i][(loss_label[i] < eps)])
                else:
                    nega_loss = torch.mean(torch.topk(pre_loss[i][(loss_label[i] < eps)], 3 * positive_pixel)[0])
                    average_number += 3 * positive_pixel
                sum_loss += nega_loss
            else:
                nega_loss = torch.mean(torch.topk(pre_loss[i], 100)[0])
                average_number += 100
                sum_loss += nega_loss
            # sum_loss += loss/average_number

        return sum_loss/batch_size

    def cls_ohem(self, predict, target, train_mask, negative_ratio=3.):
        pos = (target * train_mask).bool()
        neg = ((1 - target) * train_mask).bool()

        n_pos = pos.float().sum()

        if n_pos.item() > 0:
            loss_pos = self.BCE_loss(predict[pos], target[pos]).sum()
            loss_neg = self.BCE_loss(predict[neg], target[neg])
            n_neg = min(int(neg.float().sum().item()), int(negative_ratio * n_pos.float()))
        else:
            loss_pos = torch.tensor(0.)
            loss_neg = self.BCE_loss(predict[neg], target[neg])
            n_neg = 100
        loss_neg, _ = torch.topk(loss_neg, n_neg)

        return (loss_pos + loss_neg.sum()) / (n_pos + n_neg).float()

    @staticmethod
    def loss_calc_flux(pred_flux, gt_flux, weight_matrix, mask, train_mask):

        # norm loss
        gt_flux = 0.999999 * gt_flux / (gt_flux.norm(p=2, dim=1).unsqueeze(1) + 1e-9)
        norm_loss = weight_matrix * torch.sum((pred_flux - gt_flux) ** 2, dim=1)*train_mask
        norm_loss = norm_loss.sum(-1).mean()

        # angle loss
        mask = train_mask * mask
        pred_flux = 0.999999 * pred_flux / (pred_flux.norm(p=2, dim=1).unsqueeze(1) + 1e-9)
        # angle_loss = weight_matrix * (torch.acos(torch.sum(pred_flux * gt_flux, dim=1))) ** 2
        # angle_loss = angle_loss.sum(-1).mean()
        angle_loss = (1 - torch.cosine_similarity(pred_flux, gt_flux, dim=1))
        angle_loss = angle_loss[mask].mean()

        return norm_loss, angle_loss

    def forward(self, input_dict, output_dict, eps=None):
        """
          calculate boundary proposal network loss
        """
        # tr_mask = tr_mask.permute(0, 3, 1, 2).contiguous()

        fy_preds = output_dict["fy_preds"]
        py_preds = output_dict["py_preds"]
        inds = output_dict["inds"]

        train_mask = input_dict['train_mask']
        tr_mask = input_dict['tr_mask'] > 0
        distance_field = input_dict['distance_field']
        direction_field = input_dict['direction_field']
        weight_matrix = input_dict['weight_matrix']
        gt_tags = input_dict['gt_points']

        # pixel class loss
        cls_loss = self.cls_ohem(fy_preds[:, 0, :, :], tr_mask.float(), train_mask.bool())

        # distance field loss
        dis_loss = self.MSE_loss(fy_preds[:, 1, :, :], distance_field)
        dis_loss = torch.mul(dis_loss, train_mask.float())
        dis_loss = self.single_image_loss(dis_loss, distance_field)

        # direction field loss
        norm_loss, angle_loss = self.loss_calc_flux(fy_preds[:, 2:4, :, :],
                                                    direction_field, weight_matrix, tr_mask, train_mask)

        # boundary point loss
        point_loss = self.PolyMatchingLoss(py_preds, gt_tags[inds])

        if eps is None:
            loss_b = 0.05*point_loss
            loss = cls_loss + 3.0*dis_loss + norm_loss + angle_loss + loss_b
        else:
            loss_b = 0.1*(torch.sigmoid(torch.tensor((eps - cfg.max_epoch)/cfg.max_epoch))) * point_loss
            loss = cls_loss + 3.0*dis_loss + norm_loss + angle_loss + loss_b

        loss_dict = {
            'total_loss': loss,
            'cls_loss': cls_loss,
            'distance loss': 3.0*dis_loss,
            'dir_loss': norm_loss + angle_loss,
            'point_loss': loss_b,
            'norm_loss': norm_loss,
            'angle_loss': angle_loss,

        }

        return loss_dict