Spaces:
Runtime error
Runtime error
File size: 7,940 Bytes
01bb3bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
import torch
import cv2
import numpy as np
from IndicPhotoOCR.detection.textbpn.network.textnet import TextNet
from IndicPhotoOCR.detection.textbpn.cfglib.config import config as cfg
import warnings
import os
import requests
from tqdm import tqdm
# Suppress warnings
warnings.filterwarnings("ignore")
model_info = {
"textbpnpp": {
"path": "models/TextBPN_resnet50_300.pth",
"url" : "https://github.com/Bhashini-IITJ/SceneTextDetection/releases/download/TextBPN%2B%2B/TextBPN_resnet50_300.pth",
},
"textbpnpp_deformable": {
"path":"models/TextBPN_deformable_resnet50_300.pth",
"url": "https://github.com/Bhashini-IITJ/SceneTextDetection/releases/download/TextBPN%2B%2B/TextBPN_deformable_resnet50_300.pth",
},
"textbpn_resnet18" : {
"path":"models/TextBPN_resnet18_300.pth",
"url": "https://github.com/Bhashini-IITJ/SceneTextDetection/releases/download/TextBPN%2B%2B/TextBPN_resnet18_300.pth",
}
}
# Ensure model file exists; download directly if not
def ensure_model(model_name):
model_path = model_info[model_name]["path"]
url = model_info[model_name]["url"]
root_model_dir = "IndicPhotoOCR/detection/textbpn"
model_path = os.path.join(root_model_dir, model_path)
if not os.path.exists(model_path):
print(f"Model not found locally. Downloading {model_name} from {url}...")
# Start the download with a progress bar
response = requests.get(url, stream=True)
total_size = int(response.headers.get('content-length', 0))
os.makedirs(f"{root_model_dir}/models", exist_ok=True)
with open(model_path, "wb") as f, tqdm(
desc=model_name,
total=total_size,
unit='B',
unit_scale=True,
unit_divisor=1024,
) as bar:
for data in response.iter_content(chunk_size=1024):
f.write(data)
bar.update(len(data))
print(f"Downloaded model for {model_name}.")
return model_path
class TextBPNpp_detector:
def __init__(self, model_name="textbpnpp", backbone="resnet50", device="cpu"):
"""
Initialize the TextBPN model.
:param model_path: Path to the pre-trained model.
:param backbone: Backbone architecture (default: "resnet50").
:param device: Device to run the model on (default: "cpu").
"""
self.model_path = ensure_model(model_name)
self.device = torch.device(device)
self.model = TextNet(is_training=False, backbone=backbone)
self.model.load_model(self.model_path)
self.model.eval()
self.model.to(self.device)
@staticmethod
def to_device(tensor, device):
"""
Move tensor to the specified device.
:param tensor: Tensor to move.
:param device: Target device.
:return: Tensor on the target device.
"""
return tensor.to(device, non_blocking=True)
@staticmethod
def pad_image(image, stride=32):
"""
Pad the image to make its dimensions divisible by the stride.
:param image: Input image.
:param stride: Stride size.
:return: Padded image and original dimensions.
"""
h, w = image.shape[:2]
new_h = (h + stride - 1) // stride * stride
new_w = (w + stride - 1) // stride * stride
padded_image = cv2.copyMakeBorder(
image, 0, new_h - h, 0, new_w - w, cv2.BORDER_CONSTANT, value=(0, 0, 0)
)
return padded_image, (h, w)
@staticmethod
def rescale_result(image, bbox_contours, original_height, original_width):
"""
Rescale the bounding box contours to the original image size.
:param image: Image after resizing.
:param bbox_contours: Bounding box contours.
:param original_height: Original image height.
:param original_width: Original image width.
:return: Original image and rescaled contours.
"""
contours = []
for cont in bbox_contours:
cont[:, 0] = (cont[:, 0] * original_width / image.shape[1]).astype(int)
cont[:, 1] = (cont[:, 1] * original_height / image.shape[0]).astype(int)
contours.append(cont)
return contours
def detect(self, image_path):
"""
Perform text detection on the given image.
:param image_path: Path to the input image.
:return: Dictionary with detection results.
"""
image = cv2.imread(image_path)
if image is None:
raise ValueError(f"Failed to read the image at {image_path}")
padded_image, original_size = self.pad_image(image)
padded_tensor = (
torch.from_numpy(padded_image).permute(2, 0, 1).float() / 255.0
).unsqueeze(0) # Convert to tensor and add batch dimension
cfg.test_size = [padded_image.shape[0], padded_image.shape[1]]
input_dict = {"img": self.to_device(padded_tensor, self.device)}
with torch.no_grad():
output_dict = self.model(input_dict, padded_image.shape)
contours = output_dict["py_preds"][-1].int().cpu().numpy()
contours = self.rescale_result(image, contours, *original_size)
bbox_result_dict = {"detections": []}
for contour in contours:
# x_min, y_min = np.min(contour, axis=0)
# x_max, y_max = np.max(contour, axis=0)
# bbox_result_dict["detections"].append([x_min, y_min, x_max, y_max])
bbox_result_dict["detections"].append(contour.tolist())
return bbox_result_dict
def visualize_detections(self, image_path, bbox_result_dict, output_path="output.png"):
"""
Visualize detections on the image.
:param image_path: Path to the input image.
:param bbox_result_dict: Detection results in the format:
{'detections': [[[x1, y1], [x2, y2], [x3, y3], [x4, y4]], ...]}.
:param output_path: Path to save the visualized image. If None, the image is only displayed.
"""
# Load the image
image = cv2.imread(image_path)
if image is None:
raise ValueError(f"Failed to read the image at {image_path}")
# Draw each detection
for bbox in bbox_result_dict.get("detections", []):
points = np.array(bbox, dtype=np.int32) # Convert to numpy array
cv2.polylines(image, [points], isClosed=True, color=(0, 255, 0), thickness=2)
# Display or save the visualized image
if output_path:
cv2.imwrite(output_path, image)
print(f"Visualization saved to {output_path}")
else:
cv2.imshow("Detections", image)
cv2.waitKey(0)
cv2.destroyAllWindows()
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description='Text detection using EAST model')
parser.add_argument('--image_path', type=str, required=True, help='Path to the input image')
parser.add_argument('--device', type=str, default='cpu', help='Device to run the model on, e.g., "cpu" or "cuda"')
parser.add_argument('--model_name', type=str, required=True, help='Path to the model checkpoint file')
args = parser.parse_args()
# model_path = "/DATA1/ocrteam/anik/git/IndicPhotoOCR/IndicPhotoOCR/detection/textbpn/models/TextBPN_resnet50_300.pth"
# image_path = "/DATA1/ocrteam/anik/splitonBSTD/detection/D/image_542.jpg"
detector = TextBPNpp_detector(args.model_name, device="cpu")
result = detector.detect(args.image_path)
print(result)
# detector.visualize_detections(image_path, result)
# python -m IndicPhotoOCR.detection.textbpn.textbpnpp_detector \
# --image_path /DATA1/ocrteam/anik/splitonBSTD/detection/D/image_542.jpg \
# --model_name textbpnpp |