File size: 7,940 Bytes
01bb3bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import torch
import cv2
import numpy as np
from IndicPhotoOCR.detection.textbpn.network.textnet import TextNet
from IndicPhotoOCR.detection.textbpn.cfglib.config import config as cfg
import warnings
import os
import requests
from tqdm import tqdm

# Suppress warnings
warnings.filterwarnings("ignore")

model_info = {
    "textbpnpp": {
        "path": "models/TextBPN_resnet50_300.pth",
        "url" : "https://github.com/Bhashini-IITJ/SceneTextDetection/releases/download/TextBPN%2B%2B/TextBPN_resnet50_300.pth",
    },
    "textbpnpp_deformable": {
        "path":"models/TextBPN_deformable_resnet50_300.pth",
        "url": "https://github.com/Bhashini-IITJ/SceneTextDetection/releases/download/TextBPN%2B%2B/TextBPN_deformable_resnet50_300.pth",
    },
    "textbpn_resnet18" : {
        "path":"models/TextBPN_resnet18_300.pth",
        "url": "https://github.com/Bhashini-IITJ/SceneTextDetection/releases/download/TextBPN%2B%2B/TextBPN_resnet18_300.pth",

    }
}
        # Ensure model file exists; download directly if not
def ensure_model(model_name):
    model_path = model_info[model_name]["path"]
    url = model_info[model_name]["url"]
    root_model_dir = "IndicPhotoOCR/detection/textbpn"
    model_path = os.path.join(root_model_dir, model_path)
    
    if not os.path.exists(model_path):
        print(f"Model not found locally. Downloading {model_name} from {url}...")
        
        # Start the download with a progress bar
        response = requests.get(url, stream=True)
        total_size = int(response.headers.get('content-length', 0))
        os.makedirs(f"{root_model_dir}/models", exist_ok=True)
        
        with open(model_path, "wb") as f, tqdm(
                desc=model_name,
                total=total_size,
                unit='B',
                unit_scale=True,
                unit_divisor=1024,
        ) as bar:
            for data in response.iter_content(chunk_size=1024):
                f.write(data)
                bar.update(len(data))

        print(f"Downloaded model for {model_name}.")
        
    return model_path

class TextBPNpp_detector:
    def __init__(self, model_name="textbpnpp", backbone="resnet50", device="cpu"):
        """
        Initialize the TextBPN model.
        :param model_path: Path to the pre-trained model.
        :param backbone: Backbone architecture (default: "resnet50").
        :param device: Device to run the model on (default: "cpu").
        """
        self.model_path = ensure_model(model_name)
        self.device = torch.device(device)
        self.model = TextNet(is_training=False, backbone=backbone)
        self.model.load_model(self.model_path)
        self.model.eval()
        self.model.to(self.device)

    @staticmethod
    def to_device(tensor, device):
        """
        Move tensor to the specified device.
        :param tensor: Tensor to move.
        :param device: Target device.
        :return: Tensor on the target device.
        """
        return tensor.to(device, non_blocking=True)

    @staticmethod
    def pad_image(image, stride=32):
        """
        Pad the image to make its dimensions divisible by the stride.
        :param image: Input image.
        :param stride: Stride size.
        :return: Padded image and original dimensions.
        """
        h, w = image.shape[:2]
        new_h = (h + stride - 1) // stride * stride
        new_w = (w + stride - 1) // stride * stride
        padded_image = cv2.copyMakeBorder(
            image, 0, new_h - h, 0, new_w - w, cv2.BORDER_CONSTANT, value=(0, 0, 0)
        )
        return padded_image, (h, w)

    @staticmethod
    def rescale_result(image, bbox_contours, original_height, original_width):
        """
        Rescale the bounding box contours to the original image size.
        :param image: Image after resizing.
        :param bbox_contours: Bounding box contours.
        :param original_height: Original image height.
        :param original_width: Original image width.
        :return: Original image and rescaled contours.
        """
        contours = []
        for cont in bbox_contours:
            cont[:, 0] = (cont[:, 0] * original_width / image.shape[1]).astype(int)
            cont[:, 1] = (cont[:, 1] * original_height / image.shape[0]).astype(int)
            contours.append(cont)
        return contours

    def detect(self, image_path):
        """
        Perform text detection on the given image.
        :param image_path: Path to the input image.
        :return: Dictionary with detection results.
        """
        image = cv2.imread(image_path)
        if image is None:
            raise ValueError(f"Failed to read the image at {image_path}")

        padded_image, original_size = self.pad_image(image)
        padded_tensor = (
            torch.from_numpy(padded_image).permute(2, 0, 1).float() / 255.0
        ).unsqueeze(0)  # Convert to tensor and add batch dimension

        cfg.test_size = [padded_image.shape[0], padded_image.shape[1]]

        input_dict = {"img": self.to_device(padded_tensor, self.device)}
        with torch.no_grad():
            output_dict = self.model(input_dict, padded_image.shape)

        contours = output_dict["py_preds"][-1].int().cpu().numpy()
        contours = self.rescale_result(image, contours, *original_size)

        bbox_result_dict = {"detections": []}
        for contour in contours:
            # x_min, y_min = np.min(contour, axis=0)
            # x_max, y_max = np.max(contour, axis=0)
            # bbox_result_dict["detections"].append([x_min, y_min, x_max, y_max])
            bbox_result_dict["detections"].append(contour.tolist())

        return bbox_result_dict

    def visualize_detections(self, image_path, bbox_result_dict, output_path="output.png"):
        """
        Visualize detections on the image.
        :param image_path: Path to the input image.
        :param bbox_result_dict: Detection results in the format:
                                {'detections': [[[x1, y1], [x2, y2], [x3, y3], [x4, y4]], ...]}.
        :param output_path: Path to save the visualized image. If None, the image is only displayed.
        """
        # Load the image
        image = cv2.imread(image_path)
        if image is None:
            raise ValueError(f"Failed to read the image at {image_path}")
        
        # Draw each detection
        for bbox in bbox_result_dict.get("detections", []):
            points = np.array(bbox, dtype=np.int32)  # Convert to numpy array
            cv2.polylines(image, [points], isClosed=True, color=(0, 255, 0), thickness=2)
        
        # Display or save the visualized image
        if output_path:
            cv2.imwrite(output_path, image)
            print(f"Visualization saved to {output_path}")
        else:
            cv2.imshow("Detections", image)
            cv2.waitKey(0)
            cv2.destroyAllWindows()

if __name__ == "__main__":
    import argparse
    parser = argparse.ArgumentParser(description='Text detection using EAST model')
    parser.add_argument('--image_path', type=str, required=True, help='Path to the input image')
    parser.add_argument('--device', type=str, default='cpu', help='Device to run the model on, e.g., "cpu" or "cuda"')
    parser.add_argument('--model_name', type=str, required=True, help='Path to the model checkpoint file')
    args = parser.parse_args()



    # model_path = "/DATA1/ocrteam/anik/git/IndicPhotoOCR/IndicPhotoOCR/detection/textbpn/models/TextBPN_resnet50_300.pth"
    # image_path = "/DATA1/ocrteam/anik/splitonBSTD/detection/D/image_542.jpg"

    detector = TextBPNpp_detector(args.model_name, device="cpu")
    result = detector.detect(args.image_path)
    print(result)
    # detector.visualize_detections(image_path, result)

    # python -m IndicPhotoOCR.detection.textbpn.textbpnpp_detector \
    # --image_path /DATA1/ocrteam/anik/splitonBSTD/detection/D/image_542.jpg \
    # --model_name textbpnpp