Spaces:
Runtime error
Runtime error
File size: 27,606 Bytes
01bb3bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 |
# -*- coding: utf-8 -*-
__author__ = "S.X.Zhang"
import numpy as np
import math
import cv2
import copy
import numpy.random as random
from shapely.geometry import Polygon
import torchvision.transforms as transforms
import torchvision.transforms.functional as F
from PIL import ImageEnhance, Image
###<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<###
###<<<<<<<<< Function >>>>>>>>>>>>###
###>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>###
def crop_first(image, polygons, scale =10):
polygons_new = copy.deepcopy(polygons)
h, w, _ = image.shape
pad_h = h // scale
pad_w = w // scale
h_array = np.zeros((h + pad_h * 2), dtype=np.int32)
w_array = np.zeros((w + pad_w * 2), dtype=np.int32)
text_polys = []
pos_polys = []
for polygon in polygons_new:
rect = cv2.minAreaRect(polygon.points.astype(np.int32))
box = cv2.boxPoints(rect)
box = np.int0(box)
text_polys.append([box[0], box[1], box[2], box[3]])
if polygon.label != -1:
pos_polys.append([box[0], box[1], box[2], box[3]])
polys = np.array(text_polys, dtype=np.int32)
for poly in polys:
poly = np.round(poly, decimals=0).astype(np.int32) # 四舍五入
minx = np.min(poly[:, 0])
maxx = np.max(poly[:, 0])
w_array[minx + pad_w:maxx + pad_w] = 1
miny = np.min(poly[:, 1])
maxy = np.max(poly[:, 1])
h_array[miny + pad_h:maxy + pad_h] = 1
# ensure the cropped area not across a text 保证截取区域不会横穿文字
h_axis = np.where(h_array == 0)[0]
w_axis = np.where(w_array == 0)[0]
pp_polys = np.array(pos_polys, dtype=np.int32)
return h_axis, w_axis, pp_polys
####<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<####
####<<<<<<<<<<< Class >>>>>>>>>>>>>####
####>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>####
class Compose(object):
"""Composes several augmentations together.
Args:
transforms (List[Transform]): list of transforms to compose.
Example:
>>> augmentations.Compose([
>>> transforms.CenterCrop(10),
>>> transforms.ToTensor(),
>>> ])
"""
def __init__(self, transforms):
self.transforms = transforms
def __call__(self, img, pts=None):
for t in self.transforms:
img, pts = t(img, pts)
return img, pts
class Normalize(object):
def __init__(self, mean, std):
self.mean = np.array(mean)
self.std = np.array(std)
def __call__(self, image, polygons=None):
image = image.astype(np.float32)
image /= 255.0
image -= self.mean
image /= self.std
return image, polygons
class MinusMean(object):
def __init__(self, mean):
self.mean = np.array(mean)
def __call__(self, image, polygons=None):
image = image.astype(np.float32)
image -= self.mean
return image, polygons
class RandomMirror(object):
# 镜像
def __init__(self):
pass
def __call__(self, image, polygons=None):
if polygons is None:
return image, polygons
if random.random()< 0.3:
image = np.ascontiguousarray(image[:, ::-1])
_, width, _ = image.shape
for polygon in polygons:
polygon.points[:, 0] = width - polygon.points[:, 0]
return image, polygons
class AugmentColor(object):
# 颜色增强(添加噪声)
def __init__(self):
self.U = np.array([[-0.56543481, 0.71983482, 0.40240142],
[-0.5989477, -0.02304967, -0.80036049],
[-0.56694071, -0.6935729, 0.44423429]], dtype=np.float32)
self.EV = np.array([1.65513492, 0.48450358, 0.1565086], dtype=np.float32)
self.sigma = 0.1
self.color_vec = None
def __call__(self, img, polygons=None):
color_vec = self.color_vec
if self.color_vec is None:
if not self.sigma > 0.0:
color_vec = np.zeros(3, dtype=np.float32)
else:
color_vec = np.random.normal(0.0, self.sigma, 3)
alpha = color_vec.astype(np.float32) * self.EV
noise = np.dot(self.U, alpha.T) * 255
return np.clip(img + noise[np.newaxis, np.newaxis, :], 0, 255), polygons
class RandomContrast(object):
def __init__(self, lower=0.5, upper=1.5):
self.lower = lower
self.upper = upper
assert self.upper >= self.lower, "contrast upper must be >= lower."
assert self.lower >= 0, "contrast lower must be non-negative."
# expects float image
def __call__(self, image, polygons=None):
if random.randint(2):
alpha = random.uniform(self.lower, self.upper)
image *= alpha
return np.clip(image, 0, 255), polygons
class RandomBrightness(object):
def __init__(self, delta=32):
assert delta >= 0.0
assert delta <= 255.0
self.delta = delta
def __call__(self, image, polygons=None):
image = image.astype(np.float32)
if random.randint(2):
delta = random.uniform(-self.delta, self.delta)
image += delta
return np.clip(image, 0, 255), polygons
class RandomErasing(object):
def __init__(self, sr=(0.0004, 0.01), scale=(0.5, 3), ratio=0.2, Type ="Erasing"):
"""
:param area:
:param type: Erasing or Cutout
"""
self.sr = sr
self.scale= scale
self.ratio=ratio
self.type=Type
def __call__(self, img, polygons=None):
if random.random()< self.ratio:
return img, polygons
area=img.shape[0]*img.shape[1]
target_area=random.randint(*self.sr)*area
aspect_ratio=random.uniform(*self.scale)
h = int(round(math.sqrt(target_area / aspect_ratio)))
w = int(round(math.sqrt(target_area * aspect_ratio)))
if w < img.shape[1] and h < img.shape[0]:
x1 = random.randint(0, img.shape[1] - w)
y1 = random.randint(0, img.shape[0] - h)
if self.type == "Erasing":
color=(random.randint(0, 255),random.randint(0, 255),random.randint(0, 255))
img[y1:y1+h, x1:x1+h,:]=color
else:
Gray_value=random.randint(0, 255)
color = (Gray_value, Gray_value ,Gray_value)
img[y1:y1 + h, x1:x1 + h, :] = color
return img, polygons
class RandomMixUp(object):
def __init__(self, mixup_alpha=2):
self.mixup_alpha = mixup_alpha
def __call__(self, img1, img2, label1=[], label2=[]):
beta=np.random.beta(self.mixup_alpha,self.mixup_alpha)
#image = img1 * Gama + (1 - Gama) * img2
image=cv2.addWeighted(img1, beta, img2, (1-beta), 0)
if label1 is None or label2 is None:
return img1, label1
if isinstance(label1, list) and isinstance(label2, list):
label=[]
for id in range(len(label1)):
lab = beta*label1[id]+ (1-beta)*label2[id]
label.append(lab)
return image, label
else:
print("Error: label is not a list type")
return img1, label1
class Rotate(object):
def __init__(self, up=30):
self.up = up
@staticmethod
def rotate(center, pt, theta): # 二维图形学的旋转
xr, yr = center
yr = -yr
x, y = pt[:, 0], pt[:, 1]
y = -y
theta = theta / 180 * math.pi
cos = math.cos(theta)
sin = math.sin(theta)
_x = xr + (x - xr) * cos - (y - yr) * sin
_y = yr + (x - xr) * sin + (y - yr) * cos
return _x, -_y
def __call__(self, img, polygons=None):
if np.random.randint(2):
return img, polygons
angle = np.random.normal(loc=0.0, scale=0.5) * self.up # angle 按照高斯分布
rows, cols = img.shape[0:2]
M = cv2.getRotationMatrix2D((cols / 2, rows / 2), angle, 1.0)
img = cv2.warpAffine(img, M, (cols, rows), borderValue=[0, 0, 0])
center = cols / 2.0, rows / 2.0
if polygons is not None:
for polygon in polygons:
x, y = self.rotate(center, polygon.points, angle)
pts = np.vstack([x, y]).T
polygon.points = pts
return img, polygons
class RotatePadding(object):
def __init__(self, up=60,colors=True):
self.up = up
self.colors = colors
self.ratio = 0.5
@staticmethod
def rotate(center, pt, theta, movSize=[0, 0], scale=1): # 二维图形学的旋转
(xr, yr) = center
yr = -yr
x, y = pt[:, 0], pt[:, 1]
y = -y
theta = theta / 180 * math.pi
cos = math.cos(theta)
sin = math.sin(theta)
x = (x - xr) * scale
y = (y - yr) * scale
_x = xr + x * cos - y * sin + movSize[0]
_y = -(yr + x * sin + y * cos) + movSize[1]
return _x, _y
@staticmethod
def shift(size, degree):
angle = degree * math.pi / 180.0
width = size[0]
height = size[1]
alpha = math.cos(angle)
beta = math.sin(angle)
new_width = int(width * math.fabs(alpha) + height * math.fabs(beta))
new_height = int(width * math.fabs(beta) + height * math.fabs(alpha))
size = [new_width, new_height]
return size
def __call__(self, image, polygons=None, scale=1.0):
if np.random.random() <= self.ratio:
return image, polygons
angle = np.random.normal(loc=0.0, scale=0.5) * self.up # angle 按照高斯分布
rows, cols = image.shape[0:2]
center = (cols / 2.0, rows / 2.0)
newSize = self.shift([cols * scale, rows * scale], angle)
movSize = [int((newSize[0] - cols) / 2), int((newSize[1] - rows) / 2)]
M = cv2.getRotationMatrix2D(center, angle, scale)
M[0, 2] += int((newSize[0] - cols) / 2)
M[1, 2] += int((newSize[1] - rows) / 2)
if self.colors:
H, W, _ = image.shape
mask = np.zeros_like(image)
(h_index, w_index) = (np.random.randint(0, H * 7 // 8), np.random.randint(0, W * 7 // 8))
img_cut = image[h_index:(h_index + H // 9), w_index:(w_index + W // 9)]
img_cut = cv2.resize(img_cut, (newSize[0], newSize[1]))
mask = cv2.warpAffine(mask, M, (newSize[0], newSize[1]), borderValue=[1, 1, 1])
image = cv2.warpAffine(image, M, (newSize[0], newSize[1]), borderValue=[0,0,0])
image=image+img_cut*mask
else:
color = [0, 0, 0]
image = cv2.warpAffine(image, M, (newSize[0], newSize[1]), borderValue=color)
if polygons is not None:
for polygon in polygons:
x, y = self.rotate(center, polygon.points, angle,movSize,scale)
pts = np.vstack([x, y]).T
polygon.points = pts
return image, polygons
class SquarePadding(object):
def __call__(self, image, polygons=None):
H, W, _ = image.shape
if H == W:
return image, polygons
padding_size = max(H, W)
(h_index, w_index) = (np.random.randint(0, H*7//8),np.random.randint(0, W*7//8))
img_cut = image[h_index:(h_index+H//9),w_index:(w_index+W//9)]
expand_image = cv2.resize(img_cut,(padding_size, padding_size))
#expand_image = np.zeros((padding_size, padding_size, 3), dtype=image.dtype)
#expand_image=img_cut[:,:,:]
if H > W:
y0, x0 = 0, (H - W) // 2
else:
y0, x0 = (W - H) // 2, 0
if polygons is not None:
for polygon in polygons:
polygon.points += np.array([x0, y0])
expand_image[y0:y0+H, x0:x0+W] = image
image = expand_image
return image, polygons
class RandomImgCropPatch(object):
def __init__(self, up=30, beta=0.3):
self.up = up
self.beta=0.3
self.scale = 10
@staticmethod
def get_contour_min_area_box(contour):
rect = cv2.minAreaRect(contour)
box = cv2.boxPoints(rect)
box = np.int0(box)
return box
def CropWH(self, image, cut_w, cut_h, polygons=None):
h_axis, w_axis, polys = crop_first(image, polygons, scale=self.scale)
h, w, _ = image.shape
pad_h = h // self.scale
pad_w = w // self.scale
# TODO try Flip
xx = np.random.choice(w_axis, size=2)
xmin = np.min(xx) - pad_w
xmax = xmin + cut_w
yy = np.random.choice(h_axis, size=2)
ymin = np.min(yy) - pad_h
ymax = ymin + cut_h
if polys.shape[0] != 0:
poly_axis_in_area = (polys[:, :, 0] >= xmin) & (polys[:, :, 0] <= xmax) \
& (polys[:, :, 1] >= ymin) & (polys[:, :, 1] <= ymax)
selected_polys = np.where(np.sum(poly_axis_in_area, axis=1) == 4)[0]
else:
selected_polys = []
cropped = image[ymin:ymax + 1, xmin:xmax + 1, :]
polygons_new = []
for idx in selected_polys:
polygon = polygons[idx]
polygon.points -= np.array([xmin, ymin])
polygons_new.append(polygon)
image = cropped
polygon = polygons_new
return image, polygon
def __call__(self, images, polygons_list=None):
I_x, I_y = 1024,1024
w = int(round(I_x * random.beta(self.beta, self.beta)))
h = int(round(I_y * random.beta(self.beta, self.beta)))
w_ = [w, I_x - w, w, I_x - w]
h_ = [h, h, I_y - h, I_y - h]
new_img = np.zeros((I_x, I_y, 3), dtype=images[0].dtype)
imgs=[]
new_polygons=[]
for i, im in enumerate(images):
img, polygons = self.CropWH(im, w_[i], h_[i], polygons=polygons_list[i])
imgs.append(img)
new_polygons.append(polygons)
new_img[0:w, 0:h, :] = imgs[0]
new_img[w:I_x, 0:h, :] = imgs[1]
new_img[0:w, h:I_y, :] = imgs[2]
new_img[w:I_x, h:I_y, :] = imgs[3]
for polygon in new_polygons[1]:
polygon.points += np.array([w, 0])
for polygon in new_polygons[2]:
polygon.points += np.array([0, h])
for polygon in new_polygons[3]:
polygon.points += np.array([w, h])
polygons=new_polygons[0]+new_polygons[1]+new_polygons[2]+new_polygons[3]
return new_img, polygons
class RandomCropFlip(object):
def __init__(self, min_crop_side_ratio=0.01):
self.scale = 10
self.ratio = 0.2
self.epsilon = 10.0
self.min_crop_side_ratio = min_crop_side_ratio
def __call__(self, image, polygons=None):
if polygons is None:
return image, polygons
if np.random.random() <= self.ratio:
return image, polygons
# 计算 有效的Crop区域, 方便选取有效的种子点
h_axis, w_axis, pp_polys = crop_first(image, polygons, scale =self.scale)
if len(h_axis) == 0 or len(w_axis) == 0:
return image, polygons
# TODO try crop
attempt = 0
h, w, _ = image.shape
area = h * w
pad_h = h // self.scale
pad_w = w // self.scale
while attempt < 10:
attempt += 1
polygons_new = []
xx = np.random.choice(w_axis, size=2)
xmin = np.min(xx) - pad_w
xmax = np.max(xx) - pad_w
xmin = np.clip(xmin, 0, w - 1)
xmax = np.clip(xmax, 0, w - 1)
yy = np.random.choice(h_axis, size=2)
ymin = np.min(yy) - pad_h
ymax = np.max(yy) - pad_h
ymin = np.clip(ymin, 0, h - 1)
ymax = np.clip(ymax, 0, h - 1)
if (xmax - xmin) * (ymax - ymin) < area * self.min_crop_side_ratio:
# area too small
continue
pts = np.stack([[xmin, xmax, xmax, xmin], [ymin, ymin, ymax, ymax]]).T.astype(np.int32)
pp = Polygon(pts).buffer(0)
Fail_flag = False
for polygon in polygons:
ppi = Polygon(polygon.points).buffer(0)
ppiou = float(ppi.intersection(pp).area)
if np.abs(ppiou - float(ppi.area)) > self.epsilon and np.abs(ppiou) > self.epsilon:
Fail_flag = True
break
if np.abs(ppiou - float(ppi.area)) < self.epsilon:
polygons_new.append(polygon)
if Fail_flag:
continue
else:
break
if len(polygons_new) == 0:
cropped = image[ymin:ymax, xmin:xmax, :]
select_type = random.randint(3)
if select_type == 0:
img = np.ascontiguousarray(cropped[:, ::-1])
elif select_type == 1:
img = np.ascontiguousarray(cropped[::-1, :])
else:
img = np.ascontiguousarray(cropped[::-1, ::-1])
image[ymin:ymax, xmin:xmax, :] = img
return image, polygons
else:
cropped = image[ymin:ymax, xmin:xmax, :]
height, width, _ = cropped.shape
select_type = random.randint(3)
if select_type == 0:
img = np.ascontiguousarray(cropped[:, ::-1])
for polygon in polygons_new:
polygon.points[:, 0] = width - polygon.points[:, 0] + 2 * xmin
elif select_type == 1:
img = np.ascontiguousarray(cropped[::-1, :])
for polygon in polygons_new:
polygon.points[:, 1] = height - polygon.points[:, 1] + 2 * ymin
else:
img = np.ascontiguousarray(cropped[::-1, ::-1])
for polygon in polygons_new:
polygon.points[:, 0] = width - polygon.points[:, 0] + 2 * xmin
polygon.points[:, 1] = height - polygon.points[:, 1] + 2 * ymin
image[ymin:ymax, xmin:xmax, :] = img
return image, polygons
class RandomResizedCrop(object):
def __init__(self, min_crop_side_ratio=0.1):
self.scale = 10
self.epsilon = 1e-2
self.min_crop_side_ratio = min_crop_side_ratio
def __call__(self, image, polygons):
if polygons is None:
return image, polygons
# 计算 有效的Crop区域, 方便选取有效的种子点
h_axis, w_axis, pp_polys = crop_first(image, polygons, scale =self.scale)
if len(h_axis) == 0 or len(w_axis) == 0:
return image, polygons
# TODO try crop
attempt = 0
h, w, _ = image.shape
area = h * w
pad_h = h // self.scale
pad_w = w // self.scale
while attempt < 10:
attempt += 1
xx = np.random.choice(w_axis, size=2)
xmin = np.min(xx) - pad_w
xmax = np.max(xx) - pad_w
xmin = np.clip(xmin, 0, w - 1)
xmax = np.clip(xmax, 0, w - 1)
yy = np.random.choice(h_axis, size=2)
ymin = np.min(yy) - pad_h
ymax = np.max(yy) - pad_h
ymin = np.clip(ymin, 0, h - 1)
ymax = np.clip(ymax, 0, h - 1)
if (xmax - xmin)*(ymax - ymin) <area*self.min_crop_side_ratio:
# area too small
continue
if pp_polys.shape[0] != 0:
poly_axis_in_area = (pp_polys[:, :, 0] >= xmin) & (pp_polys[:, :, 0] <= xmax) \
& (pp_polys[:, :, 1] >= ymin) & (pp_polys[:, :, 1] <= ymax)
selected_polys = np.where(np.sum(poly_axis_in_area, axis=1) == 4)[0]
else:
selected_polys = []
if len(selected_polys) == 0:
continue
else:
pts = np.stack([[xmin, xmax, xmax, xmin], [ymin, ymin, ymax, ymax]]).T.astype(np.int32)
pp = Polygon(pts).buffer(0)
polygons_new = []
Fail_flag = False
for polygon in copy.deepcopy(polygons):
ppi = Polygon(polygon.points).buffer(0)
ppiou = float(ppi.intersection(pp).area)
if np.abs(ppiou - float(ppi.area)) > self.epsilon and np.abs(ppiou) > self.epsilon:
Fail_flag = True
break
elif np.abs(ppiou - float(ppi.area)) < self.epsilon:
# polygon.points -= np.array([xmin, ymin])
polygons_new.append(polygon)
if Fail_flag:
continue
else:
cropped = image[ymin:ymax + 1, xmin:xmax + 1, :]
for polygon in polygons_new:
polygon.points -= np.array([xmin, ymin])
return cropped, polygons_new
return image, polygons
class RandomResizeScale(object):
def __init__(self, size=512, ratio=(3./4, 5./2)):
self.size = size
self.ratio = ratio
def __call__(self, image, polygons=None):
aspect_ratio = np.random.uniform(self.ratio[0], self.ratio[1])
h, w, _ = image.shape
scales = self.size*1.0/max(h, w)
aspect_ratio = scales * aspect_ratio
aspect_ratio = int(w * aspect_ratio)*1.0/w
image = cv2.resize(image, (int(w * aspect_ratio), int(h*aspect_ratio)))
scales = np.array([aspect_ratio, aspect_ratio])
if polygons is not None:
for polygon in polygons:
polygon.points = polygon.points * scales
return image, polygons
class Resize(object):
def __init__(self, size=1024):
self.size = size
self.SP = SquarePadding()
def __call__(self, image, polygons=None):
h, w, _ = image.shape
image = cv2.resize(image, (self.size,
self.size))
scales = np.array([self.size / w, self.size / h])
if polygons is not None:
for polygon in polygons:
polygon.points = polygon.points * scales
return image, polygons
class ResizeSquare(object):
def __init__(self, size=(480, 1280)):
self.size = size
def __call__(self, image, polygons=None):
h, w, _ = image.shape
img_size_min = min(h, w)
img_size_max = max(h, w)
if img_size_min < self.size[0]:
im_scale = float(self.size[0]) / float(img_size_min) # expand min to size[0]
if np.ceil(im_scale * img_size_max) > self.size[1]: # expand max can't > size[1]
im_scale = float(self.size[1]) / float(img_size_max)
elif img_size_max > self.size[1]:
im_scale = float(self.size[1]) / float(img_size_max)
else:
im_scale = 1.0
new_h = int(int(h * im_scale/32)*32)
new_w = int(int(w * im_scale/32)*32)
# if new_h*new_w > 1600*1920:
# im_scale = 1600 / float(img_size_max)
# new_h = int(int(h * im_scale/32)*32)
# new_w = int(int(w * im_scale/32)*32)
image = cv2.resize(image, (new_w, new_h))
scales = np.array([new_w / w, new_h / h])
if polygons is not None:
for polygon in polygons:
polygon.points = polygon.points * scales
return image, polygons
class ResizeLimitSquare(object):
def __init__(self, size=512, ratio=0.6):
self.size = size
self.ratio = ratio
self.SP = SquarePadding()
def __call__(self, image, polygons=None):
if np.random.random() <= self.ratio:
image, polygons = self.SP(image, polygons)
h, w, _ = image.shape
image = cv2.resize(image, (self.size,self.size))
scales = np.array([self.size*1.0/ w, self.size*1.0 / h])
if polygons is not None:
for polygon in polygons:
polygon.points = polygon.points * scales
return image, polygons
class RandomResizePadding(object):
def __init__(self, size=512, random_scale=np.array([0.75, 1.0, 1.25,1.5,2.0]),stride=32, ratio=0.6667):
self.random_scale = random_scale
self.size = size
self.ratio=ratio
self.stride=stride
self.SP=SquarePadding()
###########Random size for different eproches ########################
rd_scale = np.random.choice(self.random_scale)
step_num = round(np.random.normal(loc=0.0, scale=0.35) * 8) # step 按照高斯分布
self.input_size = np.clip(int(self.size * rd_scale + step_num * self.stride),
(int(self.size * self.random_scale[0] - self.stride)),
int(self.size * self.random_scale[-1] + self.stride))
############################ end ########################
def __call__(self, image, polygons=None):
if np.random.random() <= self.ratio:
image, polygons = self.SP(image, polygons)
h, w, _ = image.shape
image = cv2.resize(image, (self.input_size,self.input_size))
scales = np.array([self.input_size*1.0/ w, self.input_size*1.0 / h])
if polygons is not None:
for polygon in polygons:
polygon.points = polygon.points * scales
return image, polygons
transform_type_dict = dict(
brightness=ImageEnhance.Brightness, contrast=ImageEnhance.Contrast,
sharpness=ImageEnhance.Sharpness, color=ImageEnhance.Color
)
class RandomDistortion(object):
def __init__(self, transform_dict, prob=0.5):
self.transforms = [(transform_type_dict[k], transform_dict[k]) for k in transform_dict]
self.prob = prob
def __call__(self, img, target):
if random.random() > self.prob:
return img, target
out = Image.fromarray(img)
rand_num = np.random.uniform(0, 1, len(self.transforms))
for i, (transformer, alpha) in enumerate(self.transforms):
r = alpha * (rand_num[i] * 2.0 - 1.0) + 1 # r in [1-alpha, 1+alpha)
out = transformer(out).enhance(r)
return np.array(out), target
class Augmentation(object):
def __init__(self, size, mean, std):
self.size = size
self.mean = mean
self.std = std
self._transform_dict = {'brightness': 0.5, 'contrast': 0.5, 'sharpness': 0.8386, 'color': 0.5}
self.augmentation = Compose([
RandomCropFlip(),
RandomResizeScale(size=self.size, ratio=(3. / 8, 5. / 2)),
RandomResizedCrop(),
RotatePadding(up=60, colors=True), # pretrain on Syn is "up=30", else is "up=60"
ResizeLimitSquare(size=self.size),
RandomMirror(),
RandomDistortion(self._transform_dict),
Normalize(mean=self.mean, std=self.std),
])
def __call__(self, image, polygons=None):
return self.augmentation(image, polygons)
class BaseTransform(object):
def __init__(self, size, mean, std):
self.size = size
self.mean = mean
self.std = std
self.augmentation = Compose([
# Resize(size=640),
ResizeSquare(size=self.size),
Normalize(mean, std)
])
def __call__(self, image, polygons=None):
return self.augmentation(image, polygons)
class BaseTransformNresize(object):
def __init__(self, mean, std):
self.mean = mean
self.std = std
self.augmentation = Compose([
Normalize(mean, std)
])
def __call__(self, image, polygons=None):
return self.augmentation(image, polygons)
|