File size: 13,007 Bytes
01bb3bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
import numpy as np
import errno
import os
import cv2
import math
from shapely.geometry import Polygon
from IndicPhotoOCR.detection.textbpn.cfglib.config import config as cfg
from scipy import ndimage as ndimg

def to_device(*tensors):
    if len(tensors) < 2:
        return tensors[0].to(cfg.device, non_blocking=True)
    return (t.to(cfg.device, non_blocking=True) for t in tensors)


def mkdirs(newdir):
    """
    make directory with parent path
    :param newdir: target path
    """
    try:
        if not os.path.exists(newdir):
            os.makedirs(newdir)
    except OSError as err:
        # Reraise the error unless it's about an already existing directory
        if err.errno != errno.EEXIST or not os.path.isdir(newdir):
            raise


def rescale_result(image, bbox_contours, H, W):
    ori_H, ori_W = image.shape[:2]
    image = cv2.resize(image, (W, H))
    contours = list()
    for cont in bbox_contours:
        # if cv2.contourArea(cont) < 300:
        #     continue
        cont[:, 0] = (cont[:, 0] * W / ori_W).astype(int)
        cont[:, 1] = (cont[:, 1] * H / ori_H).astype(int)
        contours.append(cont)
    return image, contours


def fill_hole(input_mask):
    h, w = input_mask.shape
    canvas = np.zeros((h + 2, w + 2), np.uint8)
    canvas[1:h + 1, 1:w + 1] = input_mask.copy()

    mask = np.zeros((h + 4, w + 4), np.uint8)

    cv2.floodFill(canvas, mask, (0, 0), 1)
    canvas = canvas[1:h + 1, 1:w + 1].astype(np.bool)

    return (~canvas | input_mask.astype(np.uint8))


def regularize_sin_cos(sin, cos):
    # regularization
    scale = np.sqrt(1.0 / (sin ** 2 + cos ** 2))
    return sin * scale, cos * scale


def gaussian2D(shape, sigma=1):
    m, n = [(ss - 1.) / 2. for ss in shape]
    y, x = np.ogrid[-m:m + 1, -n:n + 1]

    h = np.exp(-(x * x + y * y) / (2 * sigma * sigma))
    h[h < np.finfo(h.dtype).eps * h.max()] = 0
    return h


def draw_gaussian(heatmap, center, radius, k=1, delte=6):
    diameter = 2 * radius + 1
    gaussian = gaussian2D((diameter, diameter), sigma=diameter / delte)

    x, y = center

    height, width = heatmap.shape[0:2]

    left, right = min(x, radius), min(width - x, radius + 1)
    top, bottom = min(y, radius), min(height - y, radius + 1)

    masked_heatmap = heatmap[y - top:y + bottom, x - left:x + right]
    masked_gaussian = gaussian[radius - top:radius + bottom, radius - left:radius + right]
    np.maximum(masked_heatmap, masked_gaussian * k, out=masked_heatmap)


def gaussian_radius(det_size, min_overlap=0.7):
    height, width = det_size

    a1 = 1
    b1 = (height + width)
    c1 = width * height * (1 - min_overlap) / (1 + min_overlap)
    sq1 = np.sqrt(b1 ** 2 - 4 * a1 * c1)
    r1 = (b1 + sq1) / 2

    a2 = 4
    b2 = 2 * (height + width)
    c2 = (1 - min_overlap) * width * height
    sq2 = np.sqrt(b2 ** 2 - 4 * a2 * c2)
    r2 = (b2 + sq2) / 2

    a3 = 4 * min_overlap
    b3 = -2 * min_overlap * (height + width)
    c3 = (min_overlap - 1) * width * height
    sq3 = np.sqrt(b3 ** 2 - 4 * a3 * c3)
    r3 = (b3 + sq3) / 2
    return min(r1, r2, r3)


def point_dist_to_line(line, p3):
    # 计算点到直线的距离
    # line = (p1, p2)
    # compute the distance from p3 to p1-p2 #cross(x,y)矩阵的叉积,norm()求范数
    # np.linalg.norm(np.cross(p2 - p1, p1 - p3)) * 1.0 / np.linalg.norm(p2 - p1)
    # compute the distance from p3 to p1-p2
    p1, p2 = line
    d = p2 - p1

    def l2(p):
        return math.sqrt(p[0] * p[0]+ p[1]*p[1])

    if l2(d) > 0:
        distance = abs(d[1] * p3[0] - d[0] * p3[1] + p2[0] * p1[1] - p2[1] * p1[0]) / l2(d)
    else:
        distance = math.sqrt((p3[0]-p2[0])**2 + (p3[1]-p2[1])**2)

    return distance


class AverageMeter(object):
    """Computes and stores the average and current value"""
    def __init__(self):
        self.reset()

    def reset(self):
        self.val = 0
        self.avg = 0
        self.sum = 0
        self.count = 0

    def update(self, val, n=1):
        self.val = val
        self.sum += val * n
        self.count += n
        self.avg = self.sum / self.count


def norm2(x, axis=None):
    if axis:
        return np.sqrt(np.sum(x ** 2, axis=axis))
    return np.sqrt(np.sum(x ** 2))


def cos(p1, p2):
    return (p1 * p2).sum() / (norm2(p1) * norm2(p2))


def vector_sin(v):
    assert len(v) == 2
    # sin = y / (sqrt(x^2 + y^2))
    l = np.sqrt(v[0] ** 2 + v[1] ** 2) + 1e-5
    return v[1] / l


def vector_cos(v):
    assert len(v) == 2
    # cos = x / (sqrt(x^2 + y^2))
    l = np.sqrt(v[0] ** 2 + v[1] ** 2) + 1e-5
    return v[0] / l


def find_bottom(pts):

    if len(pts) > 4:
        e = np.concatenate([pts, pts[:3]])
        candidate = []
        for i in range(1, len(pts) + 1):
            v_prev = e[i] - e[i - 1]
            v_next = e[i + 2] - e[i + 1]
            if cos(v_prev, v_next) < -0.875:
                candidate.append((i % len(pts), (i + 1) % len(pts), norm2(e[i] - e[i + 1])))

        if len(candidate) != 2 or candidate[0][0] == candidate[1][1] or candidate[0][1] == candidate[1][0]:
            # if candidate number < 2, or two bottom are joined, select 2 farthest edge
            mid_list = []
            dist_list = []
            if len(candidate) > 2:

                bottom_idx = np.argsort([angle for s1, s2, angle in candidate])[0:2]
                bottoms = [candidate[bottom_idx[0]][:2], candidate[bottom_idx[1]][0:2]]
                long_edge1, long_edge2 = find_long_edges(pts, bottoms)
                edge_length1 = [norm2(pts[e1] - pts[e2]) for e1, e2 in long_edge1]
                edge_length2 = [norm2(pts[e1] - pts[e2]) for e1, e2 in long_edge2]
                l1 = sum(edge_length1)
                l2 = sum(edge_length2)
                len1 = len(edge_length1)
                len2 = len(edge_length2)

                if l1 > 2*l2 or l2 > 2*l1 or len1 == 0 or len2 == 0:
                    for i in range(len(pts)):
                        mid_point = (e[i] + e[(i + 1) % len(pts)]) / 2
                        mid_list.append((i, (i + 1) % len(pts), mid_point))

                    for i in range(len(pts)):
                        for j in range(len(pts)):
                            s1, e1, mid1 = mid_list[i]
                            s2, e2, mid2 = mid_list[j]
                            dist = norm2(mid1 - mid2)
                            dist_list.append((s1, e1, s2, e2, dist))
                    bottom_idx = np.argsort([dist for s1, e1, s2, e2, dist in dist_list])[-1]
                    bottoms = [dist_list[bottom_idx][:2], dist_list[bottom_idx][2:4]]
            else:
                mid_list = []
                for i in range(len(pts)):
                    mid_point = (e[i] + e[(i + 1) % len(pts)]) / 2
                    mid_list.append((i, (i + 1) % len(pts), mid_point))

                dist_list = []
                for i in range(len(pts)):
                    for j in range(len(pts)):
                        s1, e1, mid1 = mid_list[i]
                        s2, e2, mid2 = mid_list[j]
                        dist = norm2(mid1 - mid2)
                        dist_list.append((s1, e1, s2, e2, dist))
                bottom_idx = np.argsort([dist for s1, e1, s2, e2, dist in dist_list])[-2:]
                bottoms = [dist_list[bottom_idx[0]][:2], dist_list[bottom_idx[1]][:2]]
        else:
            bottoms = [candidate[0][:2], candidate[1][:2]]
    else:
        d1 = norm2(pts[1] - pts[0]) + norm2(pts[2] - pts[3])
        d2 = norm2(pts[2] - pts[1]) + norm2(pts[0] - pts[3])
        bottoms = [(0, 1), (2, 3)] if d1 < d2 else [(1, 2), (3, 0)]
        # bottoms = [(0, 1), (2, 3)] if 2 * d1 < d2 and d1 > 32 else [(1, 2), (3, 0)]
    assert len(bottoms) == 2, 'fewer than 2 bottoms'
    return bottoms


def split_long_edges(points, bottoms):
    """
    Find two long edge sequence of and polygon
    """
    b1_start, b1_end = bottoms[0]
    b2_start, b2_end = bottoms[1]
    n_pts = len(points)

    i = b1_end + 1
    long_edge_1 = []
    while i % n_pts != b2_end:
        long_edge_1.append((i - 1, i))
        i = (i + 1) % n_pts

    i = b2_end + 1
    long_edge_2 = []
    while i % n_pts != b1_end:
        long_edge_2.append((i - 1, i))
        i = (i + 1) % n_pts
    return long_edge_1, long_edge_2


def find_long_edges(points, bottoms):
    b1_start, b1_end = bottoms[0]
    b2_start, b2_end = bottoms[1]
    n_pts = len(points)
    i = (b1_end + 1) % n_pts
    long_edge_1 = []

    while i % n_pts != b2_end:
        start = (i - 1) % n_pts
        end = i % n_pts
        long_edge_1.append((start, end))
        i = (i + 1) % n_pts

    i = (b2_end + 1) % n_pts
    long_edge_2 = []
    while i % n_pts != b1_end:
        start = (i - 1) % n_pts
        end = i % n_pts
        long_edge_2.append((start, end))
        i = (i + 1) % n_pts
    return long_edge_1, long_edge_2


def split_edge_seqence(points, n_parts):
    pts_num = points.shape[0]
    long_edge = [(i, (i + 1) % pts_num) for i in range(pts_num)]
    edge_length = [norm2(points[e1] - points[e2]) for e1, e2 in long_edge]
    point_cumsum = np.cumsum([0] + edge_length)
    total_length = sum(edge_length)
    length_per_part = total_length / n_parts

    cur_node = 0  # first point
    splited_result = []

    for i in range(1, n_parts):
        cur_end = i * length_per_part

        while cur_end > point_cumsum[cur_node + 1]:
            cur_node += 1

        e1, e2 = long_edge[cur_node]
        e1, e2 = points[e1], points[e2]

        # start_point = points[long_edge[cur_node]]
        end_shift = cur_end - point_cumsum[cur_node]
        ratio = end_shift / edge_length[cur_node]
        new_point = e1 + ratio * (e2 - e1)
        # print(cur_end, point_cumsum[cur_node], end_shift, edge_length[cur_node], '=', new_point)
        splited_result.append(new_point)

    # add first and last point
    p_first = points[long_edge[0][0]]
    p_last = points[long_edge[-1][1]]
    splited_result = [p_first] + splited_result + [p_last]
    return np.stack(splited_result)


def split_edge_seqence_with_cell_division(points, n_parts):
    points_seq = list(points)
    pts_num = len(points_seq)

    if pts_num <= n_parts:
        long_edge = [(i, (i + 1) % pts_num) for i in range(pts_num)]
        edge_length = [int(norm2(points[e1] - points[e2])) for e1, e2 in long_edge]
        while pts_num < n_parts:
            e = np.argmax(np.array(edge_length))
            new_pts = (points_seq[e] + points_seq[(e+1) % pts_num])*0.5
            points_seq.insert(e+1, new_pts)
            d = int(0.5 * (edge_length[e]-1))
            edge_length[e] = d
            edge_length.insert(e+1, d)
            pts_num = len(points_seq)
    else:
        pass

    return np.stack(points_seq).astype(int)


def split_edge_seqence_by_step(points, long_edge1, long_edge2, step=16.0):

    edge_length1 = [norm2(points[e1] - points[e2]) for e1, e2 in long_edge1]
    edge_length2 = [norm2(points[e1] - points[e2]) for e1, e2 in long_edge2]
    # 取长边 计算bbox个数
    total_length = (sum(edge_length1)+sum(edge_length2))/2
    n_parts = math.ceil(float(total_length) / step)
    try:
        inner1 = split_edge_seqence(points, long_edge1, n_parts=n_parts)
        inner2 = split_edge_seqence(points, long_edge2, n_parts=n_parts)
    except:
        print(edge_length1)
        print(edge_length2)

    return inner1, inner2


def disjoint_find(x, F):
    if F[x] == x:
        return x
    F[x] = disjoint_find(F[x], F)
    return F[x]


def disjoint_merge(x, y, F):
    x = disjoint_find(x, F)
    y = disjoint_find(y, F)
    if x == y:
        return False
    F[y] = x
    return True


def merge_polygons(polygons, merge_map):

    def merge_two_polygon(p1, p2):
        p2 = Polygon(p2)
        merged = p1.union(p2)
        return merged

    merge_map = [disjoint_find(x, merge_map) for x in range(len(merge_map))]
    merge_map = np.array(merge_map)
    final_polygons = []

    for i in np.unique(merge_map):
        merge_idx = np.where(merge_map == i)[0]
        if len(merge_idx) > 0:
            merged = Polygon(polygons[merge_idx[0]])
            for j in range(1, len(merge_idx)):
                merged = merge_two_polygon(merged, polygons[merge_idx[j]])
            x, y = merged.exterior.coords.xy
            final_polygons.append(np.stack([x, y], axis=1).astype(int))

    return final_polygons


def get_sample_point(text_mask, num_points, approx_factor, scales=None):
    # get sample point in contours
    contours, _ = cv2.findContours(text_mask.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    epsilon = approx_factor * cv2.arcLength(contours[0], True)
    approx = cv2.approxPolyDP(contours[0], epsilon, True).reshape((-1, 2))
    # approx = contours[0].reshape((-1, 2))
    if scales is None:
        ctrl_points = split_edge_seqence(approx, num_points)
    else:
        ctrl_points = split_edge_seqence(approx*scales, num_points)
    ctrl_points = np.array(ctrl_points[:num_points, :]).astype(np.int32)

    return ctrl_points