Spaces:
Runtime error
Runtime error
File size: 13,007 Bytes
01bb3bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 |
import numpy as np
import errno
import os
import cv2
import math
from shapely.geometry import Polygon
from IndicPhotoOCR.detection.textbpn.cfglib.config import config as cfg
from scipy import ndimage as ndimg
def to_device(*tensors):
if len(tensors) < 2:
return tensors[0].to(cfg.device, non_blocking=True)
return (t.to(cfg.device, non_blocking=True) for t in tensors)
def mkdirs(newdir):
"""
make directory with parent path
:param newdir: target path
"""
try:
if not os.path.exists(newdir):
os.makedirs(newdir)
except OSError as err:
# Reraise the error unless it's about an already existing directory
if err.errno != errno.EEXIST or not os.path.isdir(newdir):
raise
def rescale_result(image, bbox_contours, H, W):
ori_H, ori_W = image.shape[:2]
image = cv2.resize(image, (W, H))
contours = list()
for cont in bbox_contours:
# if cv2.contourArea(cont) < 300:
# continue
cont[:, 0] = (cont[:, 0] * W / ori_W).astype(int)
cont[:, 1] = (cont[:, 1] * H / ori_H).astype(int)
contours.append(cont)
return image, contours
def fill_hole(input_mask):
h, w = input_mask.shape
canvas = np.zeros((h + 2, w + 2), np.uint8)
canvas[1:h + 1, 1:w + 1] = input_mask.copy()
mask = np.zeros((h + 4, w + 4), np.uint8)
cv2.floodFill(canvas, mask, (0, 0), 1)
canvas = canvas[1:h + 1, 1:w + 1].astype(np.bool)
return (~canvas | input_mask.astype(np.uint8))
def regularize_sin_cos(sin, cos):
# regularization
scale = np.sqrt(1.0 / (sin ** 2 + cos ** 2))
return sin * scale, cos * scale
def gaussian2D(shape, sigma=1):
m, n = [(ss - 1.) / 2. for ss in shape]
y, x = np.ogrid[-m:m + 1, -n:n + 1]
h = np.exp(-(x * x + y * y) / (2 * sigma * sigma))
h[h < np.finfo(h.dtype).eps * h.max()] = 0
return h
def draw_gaussian(heatmap, center, radius, k=1, delte=6):
diameter = 2 * radius + 1
gaussian = gaussian2D((diameter, diameter), sigma=diameter / delte)
x, y = center
height, width = heatmap.shape[0:2]
left, right = min(x, radius), min(width - x, radius + 1)
top, bottom = min(y, radius), min(height - y, radius + 1)
masked_heatmap = heatmap[y - top:y + bottom, x - left:x + right]
masked_gaussian = gaussian[radius - top:radius + bottom, radius - left:radius + right]
np.maximum(masked_heatmap, masked_gaussian * k, out=masked_heatmap)
def gaussian_radius(det_size, min_overlap=0.7):
height, width = det_size
a1 = 1
b1 = (height + width)
c1 = width * height * (1 - min_overlap) / (1 + min_overlap)
sq1 = np.sqrt(b1 ** 2 - 4 * a1 * c1)
r1 = (b1 + sq1) / 2
a2 = 4
b2 = 2 * (height + width)
c2 = (1 - min_overlap) * width * height
sq2 = np.sqrt(b2 ** 2 - 4 * a2 * c2)
r2 = (b2 + sq2) / 2
a3 = 4 * min_overlap
b3 = -2 * min_overlap * (height + width)
c3 = (min_overlap - 1) * width * height
sq3 = np.sqrt(b3 ** 2 - 4 * a3 * c3)
r3 = (b3 + sq3) / 2
return min(r1, r2, r3)
def point_dist_to_line(line, p3):
# 计算点到直线的距离
# line = (p1, p2)
# compute the distance from p3 to p1-p2 #cross(x,y)矩阵的叉积,norm()求范数
# np.linalg.norm(np.cross(p2 - p1, p1 - p3)) * 1.0 / np.linalg.norm(p2 - p1)
# compute the distance from p3 to p1-p2
p1, p2 = line
d = p2 - p1
def l2(p):
return math.sqrt(p[0] * p[0]+ p[1]*p[1])
if l2(d) > 0:
distance = abs(d[1] * p3[0] - d[0] * p3[1] + p2[0] * p1[1] - p2[1] * p1[0]) / l2(d)
else:
distance = math.sqrt((p3[0]-p2[0])**2 + (p3[1]-p2[1])**2)
return distance
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def norm2(x, axis=None):
if axis:
return np.sqrt(np.sum(x ** 2, axis=axis))
return np.sqrt(np.sum(x ** 2))
def cos(p1, p2):
return (p1 * p2).sum() / (norm2(p1) * norm2(p2))
def vector_sin(v):
assert len(v) == 2
# sin = y / (sqrt(x^2 + y^2))
l = np.sqrt(v[0] ** 2 + v[1] ** 2) + 1e-5
return v[1] / l
def vector_cos(v):
assert len(v) == 2
# cos = x / (sqrt(x^2 + y^2))
l = np.sqrt(v[0] ** 2 + v[1] ** 2) + 1e-5
return v[0] / l
def find_bottom(pts):
if len(pts) > 4:
e = np.concatenate([pts, pts[:3]])
candidate = []
for i in range(1, len(pts) + 1):
v_prev = e[i] - e[i - 1]
v_next = e[i + 2] - e[i + 1]
if cos(v_prev, v_next) < -0.875:
candidate.append((i % len(pts), (i + 1) % len(pts), norm2(e[i] - e[i + 1])))
if len(candidate) != 2 or candidate[0][0] == candidate[1][1] or candidate[0][1] == candidate[1][0]:
# if candidate number < 2, or two bottom are joined, select 2 farthest edge
mid_list = []
dist_list = []
if len(candidate) > 2:
bottom_idx = np.argsort([angle for s1, s2, angle in candidate])[0:2]
bottoms = [candidate[bottom_idx[0]][:2], candidate[bottom_idx[1]][0:2]]
long_edge1, long_edge2 = find_long_edges(pts, bottoms)
edge_length1 = [norm2(pts[e1] - pts[e2]) for e1, e2 in long_edge1]
edge_length2 = [norm2(pts[e1] - pts[e2]) for e1, e2 in long_edge2]
l1 = sum(edge_length1)
l2 = sum(edge_length2)
len1 = len(edge_length1)
len2 = len(edge_length2)
if l1 > 2*l2 or l2 > 2*l1 or len1 == 0 or len2 == 0:
for i in range(len(pts)):
mid_point = (e[i] + e[(i + 1) % len(pts)]) / 2
mid_list.append((i, (i + 1) % len(pts), mid_point))
for i in range(len(pts)):
for j in range(len(pts)):
s1, e1, mid1 = mid_list[i]
s2, e2, mid2 = mid_list[j]
dist = norm2(mid1 - mid2)
dist_list.append((s1, e1, s2, e2, dist))
bottom_idx = np.argsort([dist for s1, e1, s2, e2, dist in dist_list])[-1]
bottoms = [dist_list[bottom_idx][:2], dist_list[bottom_idx][2:4]]
else:
mid_list = []
for i in range(len(pts)):
mid_point = (e[i] + e[(i + 1) % len(pts)]) / 2
mid_list.append((i, (i + 1) % len(pts), mid_point))
dist_list = []
for i in range(len(pts)):
for j in range(len(pts)):
s1, e1, mid1 = mid_list[i]
s2, e2, mid2 = mid_list[j]
dist = norm2(mid1 - mid2)
dist_list.append((s1, e1, s2, e2, dist))
bottom_idx = np.argsort([dist for s1, e1, s2, e2, dist in dist_list])[-2:]
bottoms = [dist_list[bottom_idx[0]][:2], dist_list[bottom_idx[1]][:2]]
else:
bottoms = [candidate[0][:2], candidate[1][:2]]
else:
d1 = norm2(pts[1] - pts[0]) + norm2(pts[2] - pts[3])
d2 = norm2(pts[2] - pts[1]) + norm2(pts[0] - pts[3])
bottoms = [(0, 1), (2, 3)] if d1 < d2 else [(1, 2), (3, 0)]
# bottoms = [(0, 1), (2, 3)] if 2 * d1 < d2 and d1 > 32 else [(1, 2), (3, 0)]
assert len(bottoms) == 2, 'fewer than 2 bottoms'
return bottoms
def split_long_edges(points, bottoms):
"""
Find two long edge sequence of and polygon
"""
b1_start, b1_end = bottoms[0]
b2_start, b2_end = bottoms[1]
n_pts = len(points)
i = b1_end + 1
long_edge_1 = []
while i % n_pts != b2_end:
long_edge_1.append((i - 1, i))
i = (i + 1) % n_pts
i = b2_end + 1
long_edge_2 = []
while i % n_pts != b1_end:
long_edge_2.append((i - 1, i))
i = (i + 1) % n_pts
return long_edge_1, long_edge_2
def find_long_edges(points, bottoms):
b1_start, b1_end = bottoms[0]
b2_start, b2_end = bottoms[1]
n_pts = len(points)
i = (b1_end + 1) % n_pts
long_edge_1 = []
while i % n_pts != b2_end:
start = (i - 1) % n_pts
end = i % n_pts
long_edge_1.append((start, end))
i = (i + 1) % n_pts
i = (b2_end + 1) % n_pts
long_edge_2 = []
while i % n_pts != b1_end:
start = (i - 1) % n_pts
end = i % n_pts
long_edge_2.append((start, end))
i = (i + 1) % n_pts
return long_edge_1, long_edge_2
def split_edge_seqence(points, n_parts):
pts_num = points.shape[0]
long_edge = [(i, (i + 1) % pts_num) for i in range(pts_num)]
edge_length = [norm2(points[e1] - points[e2]) for e1, e2 in long_edge]
point_cumsum = np.cumsum([0] + edge_length)
total_length = sum(edge_length)
length_per_part = total_length / n_parts
cur_node = 0 # first point
splited_result = []
for i in range(1, n_parts):
cur_end = i * length_per_part
while cur_end > point_cumsum[cur_node + 1]:
cur_node += 1
e1, e2 = long_edge[cur_node]
e1, e2 = points[e1], points[e2]
# start_point = points[long_edge[cur_node]]
end_shift = cur_end - point_cumsum[cur_node]
ratio = end_shift / edge_length[cur_node]
new_point = e1 + ratio * (e2 - e1)
# print(cur_end, point_cumsum[cur_node], end_shift, edge_length[cur_node], '=', new_point)
splited_result.append(new_point)
# add first and last point
p_first = points[long_edge[0][0]]
p_last = points[long_edge[-1][1]]
splited_result = [p_first] + splited_result + [p_last]
return np.stack(splited_result)
def split_edge_seqence_with_cell_division(points, n_parts):
points_seq = list(points)
pts_num = len(points_seq)
if pts_num <= n_parts:
long_edge = [(i, (i + 1) % pts_num) for i in range(pts_num)]
edge_length = [int(norm2(points[e1] - points[e2])) for e1, e2 in long_edge]
while pts_num < n_parts:
e = np.argmax(np.array(edge_length))
new_pts = (points_seq[e] + points_seq[(e+1) % pts_num])*0.5
points_seq.insert(e+1, new_pts)
d = int(0.5 * (edge_length[e]-1))
edge_length[e] = d
edge_length.insert(e+1, d)
pts_num = len(points_seq)
else:
pass
return np.stack(points_seq).astype(int)
def split_edge_seqence_by_step(points, long_edge1, long_edge2, step=16.0):
edge_length1 = [norm2(points[e1] - points[e2]) for e1, e2 in long_edge1]
edge_length2 = [norm2(points[e1] - points[e2]) for e1, e2 in long_edge2]
# 取长边 计算bbox个数
total_length = (sum(edge_length1)+sum(edge_length2))/2
n_parts = math.ceil(float(total_length) / step)
try:
inner1 = split_edge_seqence(points, long_edge1, n_parts=n_parts)
inner2 = split_edge_seqence(points, long_edge2, n_parts=n_parts)
except:
print(edge_length1)
print(edge_length2)
return inner1, inner2
def disjoint_find(x, F):
if F[x] == x:
return x
F[x] = disjoint_find(F[x], F)
return F[x]
def disjoint_merge(x, y, F):
x = disjoint_find(x, F)
y = disjoint_find(y, F)
if x == y:
return False
F[y] = x
return True
def merge_polygons(polygons, merge_map):
def merge_two_polygon(p1, p2):
p2 = Polygon(p2)
merged = p1.union(p2)
return merged
merge_map = [disjoint_find(x, merge_map) for x in range(len(merge_map))]
merge_map = np.array(merge_map)
final_polygons = []
for i in np.unique(merge_map):
merge_idx = np.where(merge_map == i)[0]
if len(merge_idx) > 0:
merged = Polygon(polygons[merge_idx[0]])
for j in range(1, len(merge_idx)):
merged = merge_two_polygon(merged, polygons[merge_idx[j]])
x, y = merged.exterior.coords.xy
final_polygons.append(np.stack([x, y], axis=1).astype(int))
return final_polygons
def get_sample_point(text_mask, num_points, approx_factor, scales=None):
# get sample point in contours
contours, _ = cv2.findContours(text_mask.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
epsilon = approx_factor * cv2.arcLength(contours[0], True)
approx = cv2.approxPolyDP(contours[0], epsilon, True).reshape((-1, 2))
# approx = contours[0].reshape((-1, 2))
if scales is None:
ctrl_points = split_edge_seqence(approx, num_points)
else:
ctrl_points = split_edge_seqence(approx*scales, num_points)
ctrl_points = np.array(ctrl_points[:num_points, :]).astype(np.int32)
return ctrl_points
|