File size: 10,236 Bytes
01bb3bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import numpy as np

# def detect_para(bbox_dict):
#     alpha1 = 0.2
#     alpha2 = 0.7
#     beta1 = 0.4
#     data = bbox_dict
#     word_crops = list(data.keys())
#     for i in word_crops:
#         data[i]["x1"], data[i]["y1"], data[i]["x2"], data[i]["y2"] = data[i]["bbox"]
#         data[i]["xc"] = (data[i]["x1"] + data[i]["x2"]) / 2
#         data[i]["yc"] = (data[i]["y1"] + data[i]["y2"]) / 2
#         data[i]["w"] = data[i]["x2"] - data[i]["x1"]
#         data[i]["h"] = data[i]["y2"] - data[i]["y1"]

#     patch_info = {}
#     while word_crops:
#         img_name = word_crops[0].split("_")[0]
#         word_crop_collection = [
#             word_crop for word_crop in word_crops if word_crop.startswith(img_name)
#         ]
#         centroids = {}
#         lines = []
#         img_word_crops = word_crop_collection.copy()
#         para = []
#         while img_word_crops:
#             clusters = []
#             para_words_group = [
#                 img_word_crops[0],
#             ]
#             added = [
#                 img_word_crops[0],
#             ]
#             img_word_crops.remove(img_word_crops[0])
#             ## determining the paragraph
#             while added:
#                 word_crop = added.pop()
#                 for i in range(len(img_word_crops)):
#                     word_crop_ = img_word_crops[i]
#                     if (
#                         abs(data[word_crop_]["yc"] - data[word_crop]["yc"])
#                         < data[word_crop]["h"] * alpha1
#                     ):
#                         if data[word_crop]["xc"] > data[word_crop_]["xc"]:
#                             if (data[word_crop]["x1"] - data[word_crop_]["x2"]) < data[
#                                 word_crop
#                             ]["h"] * alpha2:
#                                 para_words_group.append(word_crop_)
#                                 added.append(word_crop_)
#                         else:
#                             if (data[word_crop_]["x1"] - data[word_crop]["x2"]) < data[
#                                 word_crop
#                             ]["h"] * alpha2:
#                                 para_words_group.append(word_crop_)
#                                 added.append(word_crop_)
#                     else:
#                         if data[word_crop]["yc"] > data[word_crop_]["yc"]:
#                             if (data[word_crop]["y1"] - data[word_crop_]["y2"]) < data[
#                                 word_crop
#                             ]["h"] * beta1 and (
#                                 (
#                                     (data[word_crop_]["x1"] < data[word_crop]["x2"])
#                                     and (data[word_crop_]["x1"] > data[word_crop]["x1"])
#                                 )
#                                 or (
#                                     (data[word_crop_]["x2"] < data[word_crop]["x2"])
#                                     and (data[word_crop_]["x2"] > data[word_crop]["x1"])
#                                 )
#                                 or (
#                                     (data[word_crop]["x1"] > data[word_crop_]["x1"])
#                                     and (data[word_crop]["x2"] < data[word_crop_]["x2"])
#                                 )
#                             ):
#                                 para_words_group.append(word_crop_)
#                                 added.append(word_crop_)
#                         else:
#                             if (data[word_crop_]["y1"] - data[word_crop]["y2"]) < data[
#                                 word_crop
#                             ]["h"] * beta1 and (
#                                 (
#                                     (data[word_crop_]["x1"] < data[word_crop]["x2"])
#                                     and (data[word_crop_]["x1"] > data[word_crop]["x1"])
#                                 )
#                                 or (
#                                     (data[word_crop_]["x2"] < data[word_crop]["x2"])
#                                     and (data[word_crop_]["x2"] > data[word_crop]["x1"])
#                                 )
#                                 or (
#                                     (data[word_crop]["x1"] > data[word_crop_]["x1"])
#                                     and (data[word_crop]["x2"] < data[word_crop_]["x2"])
#                                 )
#                             ):
#                                 para_words_group.append(word_crop_)
#                                 added.append(word_crop_)
#                 img_word_crops = [p for p in img_word_crops if p not in para_words_group]
#             ## processing for the line
#             while para_words_group:
#                 line_words_group = [
#                     para_words_group[0],
#                 ]
#                 added = [
#                     para_words_group[0],
#                 ]
#                 para_words_group.remove(para_words_group[0])
#                 ## determining the line
#                 while added:
#                     word_crop = added.pop()
#                     for i in range(len(para_words_group)):
#                         word_crop_ = para_words_group[i]
#                         if (
#                             abs(data[word_crop_]["yc"] - data[word_crop]["yc"])
#                             < data[word_crop]["h"] * alpha1
#                         ):
#                             if data[word_crop]["xc"] > data[word_crop_]["xc"]:
#                                 if (data[word_crop]["x1"] - data[word_crop_]["x2"]) < data[
#                                     word_crop
#                                 ]["h"] * alpha2:
#                                     line_words_group.append(word_crop_)
#                                     added.append(word_crop_)
#                             else:
#                                 if (data[word_crop_]["x1"] - data[word_crop]["x2"]) < data[
#                                     word_crop
#                                 ]["h"] * alpha2:
#                                     line_words_group.append(word_crop_)
#                                     added.append(word_crop_)
#                     para_words_group = [
#                         p for p in para_words_group if p not in line_words_group
#                     ]
#                 xc = [data[word_crop]["xc"] for word_crop in line_words_group]
#                 idxs = np.argsort(xc)
#                 patch_cluster_ = [line_words_group[i] for i in idxs]
#                 line_words_group = patch_cluster_
#                 x1 = [data[word_crop]["x1"] for word_crop in line_words_group]
#                 x2 = [data[word_crop]["x2"] for word_crop in line_words_group]
#                 y1 = [data[word_crop]["y1"] for word_crop in line_words_group]
#                 y2 = [data[word_crop]["y2"] for word_crop in line_words_group]
#                 txt_line = [data[word_crop]["txt"] for word_crop in line_words_group]
#                 txt = " ".join(txt_line)
#                 x = [x1[0]]
#                 y1_ = [y1[0]]
#                 y2_ = [y2[0]]
#                 l = [len(txt_l) for txt_l in txt_line]
#                 for i in range(1, len(x1)):
#                     x.append((x1[i] + x2[i - 1]) / 2)
#                     y1_.append((y1[i] + y1[i - 1]) / 2)
#                     y2_.append((y2[i] + y2[i - 1]) / 2)
#                 x.append(x2[-1])
#                 y1_.append(y1[-1])
#                 y2_.append(y2[-1])
#                 line_info = {
#                     "x": x,
#                     "y1": y1_,
#                     "y2": y2_,
#                     "l": l,
#                     "txt": txt,
#                     "word_crops": line_words_group,
#                 }
#                 clusters.append(line_info)
#             y_ = [clusters[i]["y1"][0] for i in range(len(clusters))]
#             idxs = np.argsort(y_)
#             clusters_ = [clusters[i] for i in idxs]
#             txt = [clusters[i]["txt"] for i in idxs]
#             l = [len(t) for t in txt]
#             txt = " ".join(txt)
#             para_info = {"lines": clusters_, "l": l, "txt": txt}
#             para.append(para_info)

#         for word_crop in word_crop_collection:
#             word_crops.remove(word_crop)
#         return "\n".join([para[i]["txt"] for i in range(len(para))])


def detect_para(recognized_texts):
    """
    Sort words into lines based on horizontal overlap of bounding boxes.
    
    Args:
        recognized_texts (dict): A dictionary with recognized texts as keys and bounding boxes as values.
                                 Each bounding box is a list of points [x1, y1, x2, y2].
    
    Returns:
        list: A list of lists where each sublist contains words sorted by x-coordinate for a single line.
    """
    def calculate_overlap(bbox1, bbox2):
        """Calculate the vertical overlap between two bounding boxes."""
        # Extract bounding box coordinates
        x1_1, y1_1, x2_1, y2_1 = bbox1
        x1_2, y1_2, x2_2, y2_2 = bbox2

        overlap = max(0, min(y2_1, y2_2) - max(y1_1, y1_2))
        height = min(y2_1 - y1_1, y2_2 - y1_2)
        return overlap / height if height > 0 else 0

    # Convert recognized_texts dictionary to a list of tuples for processing
    items = list(recognized_texts.items())
    lines = []

    while items:
        current_image, current_data = items.pop(0)
        current_text, current_bbox = current_data['txt'], current_data['bbox']
        current_line = [(current_text, current_bbox)]

        remaining_items = []
        for image, data in items:
            text, bbox = data['txt'], data['bbox']
            if calculate_overlap(current_bbox, bbox) > 0.4:
                current_line.append((text, bbox))
            else:
                remaining_items.append((image, data))

        items = remaining_items
        lines.append(current_line)

    # Sort words within each line based on x1 (horizontal position)
    sorted_lines = [
        [text for text, bbox in sorted(line, key=lambda x: x[1][0])] for line in lines
    ]
    return sorted_lines