File size: 7,255 Bytes
01bb3bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
# Scene Text Recognition Model Hub
# Copyright 2022 Darwin Bautista
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from functools import partial
from typing import Optional, Sequence

import torch
import torch.nn as nn
from torch import Tensor

from timm.models.helpers import named_apply

from IndicPhotoOCR.utils.strhub.data.utils import Tokenizer
from IndicPhotoOCR.utils.strhub.models.utils import init_weights

from .modules import Decoder, DecoderLayer, Encoder, TokenEmbedding


class PARSeq(nn.Module):

    def __init__(
        self,
        num_tokens: int,
        max_label_length: int,
        img_size: Sequence[int],
        patch_size: Sequence[int],
        embed_dim: int,
        enc_num_heads: int,
        enc_mlp_ratio: int,
        enc_depth: int,
        dec_num_heads: int,
        dec_mlp_ratio: int,
        dec_depth: int,
        decode_ar: bool,
        refine_iters: int,
        dropout: float,
    ) -> None:
        super().__init__()

        self.max_label_length = max_label_length
        self.decode_ar = decode_ar
        self.refine_iters = refine_iters

        self.encoder = Encoder(
            img_size, patch_size, embed_dim=embed_dim, depth=enc_depth, num_heads=enc_num_heads, mlp_ratio=enc_mlp_ratio
        )
        decoder_layer = DecoderLayer(embed_dim, dec_num_heads, embed_dim * dec_mlp_ratio, dropout)
        self.decoder = Decoder(decoder_layer, num_layers=dec_depth, norm=nn.LayerNorm(embed_dim))

        # We don't predict <bos> nor <pad>
        self.head = nn.Linear(embed_dim, num_tokens - 2)
        self.text_embed = TokenEmbedding(num_tokens, embed_dim)

        # +1 for <eos>
        self.pos_queries = nn.Parameter(torch.Tensor(1, max_label_length + 1, embed_dim))
        self.dropout = nn.Dropout(p=dropout)
        # Encoder has its own init.
        named_apply(partial(init_weights, exclude=['encoder']), self)
        nn.init.trunc_normal_(self.pos_queries, std=0.02)

    @property
    def _device(self) -> torch.device:
        return next(self.head.parameters(recurse=False)).device

    @torch.jit.ignore
    def no_weight_decay(self):
        param_names = {'text_embed.embedding.weight', 'pos_queries'}
        enc_param_names = {'encoder.' + n for n in self.encoder.no_weight_decay()}
        return param_names.union(enc_param_names)

    def encode(self, img: torch.Tensor):
        return self.encoder(img)

    def decode(
        self,
        tgt: torch.Tensor,
        memory: torch.Tensor,
        tgt_mask: Optional[Tensor] = None,
        tgt_padding_mask: Optional[Tensor] = None,
        tgt_query: Optional[Tensor] = None,
        tgt_query_mask: Optional[Tensor] = None,
    ):
        N, L = tgt.shape
        # <bos> stands for the null context. We only supply position information for characters after <bos>.
        null_ctx = self.text_embed(tgt[:, :1])
        tgt_emb = self.pos_queries[:, : L - 1] + self.text_embed(tgt[:, 1:])
        tgt_emb = self.dropout(torch.cat([null_ctx, tgt_emb], dim=1))
        if tgt_query is None:
            tgt_query = self.pos_queries[:, :L].expand(N, -1, -1)
        tgt_query = self.dropout(tgt_query)
        return self.decoder(tgt_query, tgt_emb, memory, tgt_query_mask, tgt_mask, tgt_padding_mask)

    def forward(self, tokenizer: Tokenizer, images: Tensor, max_length: Optional[int] = None) -> Tensor:
        testing = max_length is None
        max_length = self.max_label_length if max_length is None else min(max_length, self.max_label_length)
        bs = images.shape[0]
        # +1 for <eos> at end of sequence.
        num_steps = max_length + 1
        memory = self.encode(images)

        # Query positions up to `num_steps`
        pos_queries = self.pos_queries[:, :num_steps].expand(bs, -1, -1)

        # Special case for the forward permutation. Faster than using `generate_attn_masks()`
        tgt_mask = query_mask = torch.triu(torch.ones((num_steps, num_steps), dtype=torch.bool, device=self._device), 1)

        if self.decode_ar:
            tgt_in = torch.full((bs, num_steps), tokenizer.pad_id, dtype=torch.long, device=self._device)
            tgt_in[:, 0] = tokenizer.bos_id

            logits = []
            for i in range(num_steps):
                j = i + 1  # next token index
                # Efficient decoding:
                # Input the context up to the ith token. We use only one query (at position = i) at a time.
                # This works because of the lookahead masking effect of the canonical (forward) AR context.
                # Past tokens have no access to future tokens, hence are fixed once computed.
                tgt_out = self.decode(
                    tgt_in[:, :j],
                    memory,
                    tgt_mask[:j, :j],
                    tgt_query=pos_queries[:, i:j],
                    tgt_query_mask=query_mask[i:j, :j],
                )
                # the next token probability is in the output's ith token position
                p_i = self.head(tgt_out)
                logits.append(p_i)
                if j < num_steps:
                    # greedy decode. add the next token index to the target input
                    tgt_in[:, j] = p_i.squeeze().argmax(-1)
                    # Efficient batch decoding: If all output words have at least one EOS token, end decoding.
                    if testing and (tgt_in == tokenizer.eos_id).any(dim=-1).all():
                        break

            logits = torch.cat(logits, dim=1)
        else:
            # No prior context, so input is just <bos>. We query all positions.
            tgt_in = torch.full((bs, 1), tokenizer.bos_id, dtype=torch.long, device=self._device)
            tgt_out = self.decode(tgt_in, memory, tgt_query=pos_queries)
            logits = self.head(tgt_out)

        if self.refine_iters:
            # For iterative refinement, we always use a 'cloze' mask.
            # We can derive it from the AR forward mask by unmasking the token context to the right.
            query_mask[torch.triu(torch.ones(num_steps, num_steps, dtype=torch.bool, device=self._device), 2)] = 0
            bos = torch.full((bs, 1), tokenizer.bos_id, dtype=torch.long, device=self._device)
            for i in range(self.refine_iters):
                # Prior context is the previous output.
                tgt_in = torch.cat([bos, logits[:, :-1].argmax(-1)], dim=1)
                # Mask tokens beyond the first EOS token.
                tgt_padding_mask = (tgt_in == tokenizer.eos_id).int().cumsum(-1) > 0
                tgt_out = self.decode(
                    tgt_in, memory, tgt_mask, tgt_padding_mask, pos_queries, query_mask[:, : tgt_in.shape[1]]
                )
                logits = self.head(tgt_out)

        return logits