shreyasvaidya's picture
Upload folder using huggingface_hub
01bb3bb verified
import argparse
import torch
import os
import torch.backends.cudnn as cudnn
from datetime import datetime
def str2bool(v):
return v.lower() in ("yes", "true", "t", "1")
def arg2str(args):
args_dict = vars(args)
option_str = datetime.now().strftime('%b%d_%H-%M-%S') + '\n'
for k, v in sorted(args_dict.items()):
option_str += ('{}: {}\n'.format(str(k), str(v)))
return option_str
class BaseOptions(object):
def __init__(self):
self.parser = argparse.ArgumentParser()
# basic opts
self.parser.add_argument('--exp_name', default="TD500", type=str,
choices=['Synthtext', 'Totaltext', 'Ctw1500','Icdar2015',
"MLT2017", 'TD500', "MLT2019", "ArT", "ALL"], help='Experiment name')
self.parser.add_argument("--gpu", default="1", help="set gpu id", type=str)
self.parser.add_argument('--resume', default=None, type=str, help='Path to target resume checkpoint')
self.parser.add_argument('--num_workers', default=24, type=int, help='Number of workers used in dataloading')
self.parser.add_argument('--cuda', default=True, type=str2bool, help='Use cuda to train model')
self.parser.add_argument('--mgpu', action='store_true', help='Use multi-gpu to train model')
self.parser.add_argument('--save_dir', default='./model/', help='Path to save checkpoint models')
self.parser.add_argument('--vis_dir', default='./vis/', help='Path to save visualization images')
self.parser.add_argument('--log_dir', default='./logs/', help='Path to tensorboard log')
self.parser.add_argument('--loss', default='CrossEntropyLoss', type=str, help='Training Loss')
# self.parser.add_argument('--input_channel', default=1, type=int, help='number of input channels' )
self.parser.add_argument('--pretrain', default=False, type=str2bool, help='Pretrained AutoEncoder model')
self.parser.add_argument('--verbose', '-v', default=True, type=str2bool, help='Whether to output debug info')
self.parser.add_argument('--viz', action='store_true', help='Whether to output debug info')
# self.parser.add_argument('--viz', default=True, type=str2bool, help='Whether to output debug info')
# train opts
self.parser.add_argument('--max_epoch', default=250, type=int, help='Max epochs')
self.parser.add_argument('--lr', '--learning-rate', default=1e-3, type=float, help='initial learning rate')
self.parser.add_argument('--lr_adjust', default='fix',
choices=['fix', 'poly'], type=str, help='Learning Rate Adjust Strategy')
self.parser.add_argument('--stepvalues', default=[], nargs='+', type=int, help='# of iter to change lr')
self.parser.add_argument('--weight_decay', '--wd', default=0., type=float, help='Weight decay for SGD')
self.parser.add_argument('--gamma', default=0.1, type=float, help='Gamma update for SGD lr')
self.parser.add_argument('--momentum', default=0.9, type=float, help='momentum')
self.parser.add_argument('--batch_size', default=6, type=int, help='Batch size for training')
self.parser.add_argument('--optim', default='Adam', type=str, choices=['SGD', 'Adam'], help='Optimizer')
self.parser.add_argument('--save_freq', default=5, type=int, help='save weights every # epoch')
self.parser.add_argument('--display_freq', default=10, type=int, help='display training metrics every # iter')
self.parser.add_argument('--viz_freq', default=50, type=int, help='visualize training process every # iter')
self.parser.add_argument('--log_freq', default=10000, type=int, help='log to tensorboard every # iterations')
self.parser.add_argument('--val_freq', default=1000, type=int, help='do validation every # iterations')
# backbone
self.parser.add_argument('--scale', default=1, type=int, help='prediction on 1/scale feature map')
self.parser.add_argument('--net', default='resnet50', type=str,
choices=['vgg', 'resnet50', 'resnet18',
"deformable_resnet18", "deformable_resnet50"],
help='Network architecture')
# data args
self.parser.add_argument('--load_memory', default=False, type=str2bool, help='Load data into memory')
self.parser.add_argument('--rescale', type=float, default=255.0, help='rescale factor')
self.parser.add_argument('--input_size', default=640, type=int, help='model input size')
self.parser.add_argument('--test_size', default=[640, 960], type=int, nargs='+', help='test size')
# eval args00
self.parser.add_argument('--checkepoch', default=1070, type=int, help='Load checkpoint number')
self.parser.add_argument('--start_epoch', default=0, type=int, help='start epoch number')
self.parser.add_argument('--cls_threshold', default=0.875, type=float, help='threshold of pse')
self.parser.add_argument('--dis_threshold', default=0.35, type=float, help='filter the socre < score_i')
# demo args
self.parser.add_argument('--img_root', default=None, type=str, help='Path to deploy images')
def parse(self, fixed=None):
if fixed is not None:
args = self.parser.parse_args(fixed)
else:
args = self.parser.parse_args()
return args
def initialize(self, fixed=None):
# Parse options
self.args = self.parse(fixed)
os.environ['CUDA_VISIBLE_DEVICES'] = self.args.gpu
# Setting default torch Tensor type
if self.args.cuda and torch.cuda.is_available():
torch.set_default_tensor_type('torch.cuda.FloatTensor')
cudnn.benchmark = True
else:
torch.set_default_tensor_type('torch.FloatTensor')
# Create weights saving directory
if not os.path.exists(self.args.save_dir):
os.mkdir(self.args.save_dir)
# Create weights saving directory of target model
model_save_path = os.path.join(self.args.save_dir, self.args.exp_name)
if not os.path.exists(model_save_path):
os.mkdir(model_save_path)
return self.args
def update(self, args, extra_options):
for k, v in extra_options.items():
setattr(args, k, v)