Spaces:
Runtime error
Runtime error
import argparse | |
import torch | |
import os | |
import torch.backends.cudnn as cudnn | |
from datetime import datetime | |
def str2bool(v): | |
return v.lower() in ("yes", "true", "t", "1") | |
def arg2str(args): | |
args_dict = vars(args) | |
option_str = datetime.now().strftime('%b%d_%H-%M-%S') + '\n' | |
for k, v in sorted(args_dict.items()): | |
option_str += ('{}: {}\n'.format(str(k), str(v))) | |
return option_str | |
class BaseOptions(object): | |
def __init__(self): | |
self.parser = argparse.ArgumentParser() | |
# basic opts | |
self.parser.add_argument('--exp_name', default="TD500", type=str, | |
choices=['Synthtext', 'Totaltext', 'Ctw1500','Icdar2015', | |
"MLT2017", 'TD500', "MLT2019", "ArT", "ALL"], help='Experiment name') | |
self.parser.add_argument("--gpu", default="1", help="set gpu id", type=str) | |
self.parser.add_argument('--resume', default=None, type=str, help='Path to target resume checkpoint') | |
self.parser.add_argument('--num_workers', default=24, type=int, help='Number of workers used in dataloading') | |
self.parser.add_argument('--cuda', default=True, type=str2bool, help='Use cuda to train model') | |
self.parser.add_argument('--mgpu', action='store_true', help='Use multi-gpu to train model') | |
self.parser.add_argument('--save_dir', default='./model/', help='Path to save checkpoint models') | |
self.parser.add_argument('--vis_dir', default='./vis/', help='Path to save visualization images') | |
self.parser.add_argument('--log_dir', default='./logs/', help='Path to tensorboard log') | |
self.parser.add_argument('--loss', default='CrossEntropyLoss', type=str, help='Training Loss') | |
# self.parser.add_argument('--input_channel', default=1, type=int, help='number of input channels' ) | |
self.parser.add_argument('--pretrain', default=False, type=str2bool, help='Pretrained AutoEncoder model') | |
self.parser.add_argument('--verbose', '-v', default=True, type=str2bool, help='Whether to output debug info') | |
self.parser.add_argument('--viz', action='store_true', help='Whether to output debug info') | |
# self.parser.add_argument('--viz', default=True, type=str2bool, help='Whether to output debug info') | |
# train opts | |
self.parser.add_argument('--max_epoch', default=250, type=int, help='Max epochs') | |
self.parser.add_argument('--lr', '--learning-rate', default=1e-3, type=float, help='initial learning rate') | |
self.parser.add_argument('--lr_adjust', default='fix', | |
choices=['fix', 'poly'], type=str, help='Learning Rate Adjust Strategy') | |
self.parser.add_argument('--stepvalues', default=[], nargs='+', type=int, help='# of iter to change lr') | |
self.parser.add_argument('--weight_decay', '--wd', default=0., type=float, help='Weight decay for SGD') | |
self.parser.add_argument('--gamma', default=0.1, type=float, help='Gamma update for SGD lr') | |
self.parser.add_argument('--momentum', default=0.9, type=float, help='momentum') | |
self.parser.add_argument('--batch_size', default=6, type=int, help='Batch size for training') | |
self.parser.add_argument('--optim', default='Adam', type=str, choices=['SGD', 'Adam'], help='Optimizer') | |
self.parser.add_argument('--save_freq', default=5, type=int, help='save weights every # epoch') | |
self.parser.add_argument('--display_freq', default=10, type=int, help='display training metrics every # iter') | |
self.parser.add_argument('--viz_freq', default=50, type=int, help='visualize training process every # iter') | |
self.parser.add_argument('--log_freq', default=10000, type=int, help='log to tensorboard every # iterations') | |
self.parser.add_argument('--val_freq', default=1000, type=int, help='do validation every # iterations') | |
# backbone | |
self.parser.add_argument('--scale', default=1, type=int, help='prediction on 1/scale feature map') | |
self.parser.add_argument('--net', default='resnet50', type=str, | |
choices=['vgg', 'resnet50', 'resnet18', | |
"deformable_resnet18", "deformable_resnet50"], | |
help='Network architecture') | |
# data args | |
self.parser.add_argument('--load_memory', default=False, type=str2bool, help='Load data into memory') | |
self.parser.add_argument('--rescale', type=float, default=255.0, help='rescale factor') | |
self.parser.add_argument('--input_size', default=640, type=int, help='model input size') | |
self.parser.add_argument('--test_size', default=[640, 960], type=int, nargs='+', help='test size') | |
# eval args00 | |
self.parser.add_argument('--checkepoch', default=1070, type=int, help='Load checkpoint number') | |
self.parser.add_argument('--start_epoch', default=0, type=int, help='start epoch number') | |
self.parser.add_argument('--cls_threshold', default=0.875, type=float, help='threshold of pse') | |
self.parser.add_argument('--dis_threshold', default=0.35, type=float, help='filter the socre < score_i') | |
# demo args | |
self.parser.add_argument('--img_root', default=None, type=str, help='Path to deploy images') | |
def parse(self, fixed=None): | |
if fixed is not None: | |
args = self.parser.parse_args(fixed) | |
else: | |
args = self.parser.parse_args() | |
return args | |
def initialize(self, fixed=None): | |
# Parse options | |
self.args = self.parse(fixed) | |
os.environ['CUDA_VISIBLE_DEVICES'] = self.args.gpu | |
# Setting default torch Tensor type | |
if self.args.cuda and torch.cuda.is_available(): | |
torch.set_default_tensor_type('torch.cuda.FloatTensor') | |
cudnn.benchmark = True | |
else: | |
torch.set_default_tensor_type('torch.FloatTensor') | |
# Create weights saving directory | |
if not os.path.exists(self.args.save_dir): | |
os.mkdir(self.args.save_dir) | |
# Create weights saving directory of target model | |
model_save_path = os.path.join(self.args.save_dir, self.args.exp_name) | |
if not os.path.exists(model_save_path): | |
os.mkdir(model_save_path) | |
return self.args | |
def update(self, args, extra_options): | |
for k, v in extra_options.items(): | |
setattr(args, k, v) | |