shreyasvaidya's picture
Upload folder using huggingface_hub
01bb3bb verified
# -*- coding: utf-8 -*-
# @Time : 10/1/21
# @Author : GXYM
import torch
import torch.nn as nn
from cfglib.config import config as cfg
from network.Seg_loss import SegmentLoss
from network.Reg_loss import PolyMatchingLoss
import torch.nn.functional as F
class TextLoss(nn.Module):
def __init__(self):
super().__init__()
self.MSE_loss = torch.nn.MSELoss(reduce=False, size_average=False)
self.BCE_loss = torch.nn.BCELoss(reduce=False, size_average=False)
self.PolyMatchingLoss = PolyMatchingLoss(cfg.num_points, cfg.device)
self.KL_loss = torch.nn.KLDivLoss(reduce=False, size_average=False)
@staticmethod
def single_image_loss(pre_loss, loss_label):
batch_size = pre_loss.shape[0]
sum_loss = torch.mean(pre_loss.view(-1)) * 0
pre_loss = pre_loss.view(batch_size, -1)
loss_label = loss_label.view(batch_size, -1)
eps = 0.001
for i in range(batch_size):
average_number = 0
positive_pixel = len(pre_loss[i][(loss_label[i] >= eps)])
average_number += positive_pixel
if positive_pixel != 0:
posi_loss = torch.mean(pre_loss[i][(loss_label[i] >= eps)])
sum_loss += posi_loss
if len(pre_loss[i][(loss_label[i] < eps)]) < 3 * positive_pixel:
nega_loss = torch.mean(pre_loss[i][(loss_label[i] < eps)])
average_number += len(pre_loss[i][(loss_label[i] < eps)])
else:
nega_loss = torch.mean(torch.topk(pre_loss[i][(loss_label[i] < eps)], 3 * positive_pixel)[0])
average_number += 3 * positive_pixel
sum_loss += nega_loss
else:
nega_loss = torch.mean(torch.topk(pre_loss[i], 100)[0])
average_number += 100
sum_loss += nega_loss
# sum_loss += loss/average_number
return sum_loss/batch_size
def cls_ohem(self, predict, target, train_mask, negative_ratio=3.):
pos = (target * train_mask).bool()
neg = ((1 - target) * train_mask).bool()
n_pos = pos.float().sum()
if n_pos.item() > 0:
loss_pos = self.BCE_loss(predict[pos], target[pos]).sum()
loss_neg = self.BCE_loss(predict[neg], target[neg])
n_neg = min(int(neg.float().sum().item()), int(negative_ratio * n_pos.float()))
else:
loss_pos = torch.tensor(0.)
loss_neg = self.BCE_loss(predict[neg], target[neg])
n_neg = 100
loss_neg, _ = torch.topk(loss_neg, n_neg)
return (loss_pos + loss_neg.sum()) / (n_pos + n_neg).float()
@staticmethod
def loss_calc_flux(pred_flux, gt_flux, weight_matrix, mask, train_mask):
# norm loss
gt_flux = 0.999999 * gt_flux / (gt_flux.norm(p=2, dim=1).unsqueeze(1) + 1e-3)
norm_loss = weight_matrix * torch.mean((pred_flux - gt_flux) ** 2, dim=1)*train_mask
norm_loss = norm_loss.sum(-1).mean()
# norm_loss = norm_loss.sum()
# angle loss
mask = train_mask * mask
pred_flux = 0.999999 * pred_flux / (pred_flux.norm(p=2, dim=1).unsqueeze(1) + 1e-3)
# angle_loss = weight_matrix * (torch.acos(torch.sum(pred_flux * gt_flux, dim=1))) ** 2
# angle_loss = angle_loss.sum(-1).mean()
angle_loss = (1 - torch.cosine_similarity(pred_flux, gt_flux, dim=1))
angle_loss = angle_loss[mask].mean()
return norm_loss, angle_loss
@staticmethod
def get_poly_energy(energy_field, img_poly, ind, h, w):
img_poly = img_poly.clone().float()
img_poly[..., 0] = img_poly[..., 0] / (w / 2.) - 1
img_poly[..., 1] = img_poly[..., 1] / (h / 2.) - 1
batch_size = energy_field.size(0)
gcn_feature = torch.zeros([img_poly.size(0), energy_field.size(1), img_poly.size(1)]).to(img_poly.device)
for i in range(batch_size):
poly = img_poly[ind == i].unsqueeze(0)
gcn_feature[ind == i] = torch.nn.functional.grid_sample(energy_field[i:i + 1], poly)[0].permute(1, 0, 2)
return gcn_feature
def loss_energy_regularization(self, energy_field, img_poly, inds, h, w):
energys = []
for i, py in enumerate(img_poly):
energy = self.get_poly_energy(energy_field.unsqueeze(1), py, inds, h, w)
energys.append(energy.squeeze(1).sum(-1))
regular_loss = torch.tensor(0.)
energy_loss = torch.tensor(0.)
for i, e in enumerate(energys[1:]):
regular_loss += torch.clamp(e - energys[i], min=0.0).mean()
energy_loss += torch.where(e <= 0.01, torch.tensor(0.), e).mean()
return (energy_loss+regular_loss)/len(energys[1:])
def forward(self, input_dict, output_dict, eps=None):
"""
calculate boundary proposal network loss
"""
# tr_mask = tr_mask.permute(0, 3, 1, 2).contiguous()
fy_preds = output_dict["fy_preds"]
py_preds = output_dict["py_preds"]
inds = output_dict["inds"]
train_mask = input_dict['train_mask']
tr_mask = input_dict['tr_mask'] > 0
distance_field = input_dict['distance_field']
direction_field = input_dict['direction_field']
weight_matrix = input_dict['weight_matrix']
gt_tags = input_dict['gt_points']
# # scale the prediction map
# fy_preds = F.interpolate(fy_preds, scale_factor=cfg.scale, mode='bilinear')
if cfg.scale > 1:
train_mask = F.interpolate(train_mask.float().unsqueeze(1),
scale_factor=1/cfg.scale, mode='bilinear').squeeze().bool()
tr_mask = F.interpolate(tr_mask.float().unsqueeze(1),
scale_factor=1/cfg.scale, mode='bilinear').squeeze().bool()
distance_field = F.interpolate(distance_field.unsqueeze(1),
scale_factor=1/cfg.scale, mode='bilinear').squeeze()
direction_field = F.interpolate(direction_field,
scale_factor=1 / cfg.scale, mode='bilinear')
weight_matrix = F.interpolate(weight_matrix.unsqueeze(1),
scale_factor=1/cfg.scale, mode='bilinear').squeeze()
# pixel class loss
# cls_loss = self.cls_ohem(fy_preds[:, 0, :, :], tr_mask.float(), train_mask)
cls_loss = self.BCE_loss(fy_preds[:, 0, :, :], tr_mask.float())
cls_loss = torch.mul(cls_loss, train_mask.float()).mean()
# distance field loss
dis_loss = self.MSE_loss(fy_preds[:, 1, :, :], distance_field)
dis_loss = torch.mul(dis_loss, train_mask.float())
dis_loss = self.single_image_loss(dis_loss, distance_field)
# # direction field loss
norm_loss, angle_loss = self.loss_calc_flux(fy_preds[:, 2:4, :, :], direction_field,
weight_matrix, tr_mask, train_mask)
# boundary point loss
point_loss = self.PolyMatchingLoss(py_preds[1:], gt_tags[inds])
# Minimum energy loss regularization
h, w = distance_field.size(1) * cfg.scale, distance_field.size(2) * cfg.scale
energy_loss = self.loss_energy_regularization(distance_field, py_preds, inds[0], h, w)
if eps is None:
alpha = 1.0; beta = 3.0; theta=0.5; gama = 0.05
else:
alpha = 1.0; beta = 3.0; theta=0.5;
gama = 0.1*torch.sigmoid(torch.tensor((eps - cfg.max_epoch)/cfg.max_epoch))
loss = alpha*cls_loss + beta*dis_loss + theta*(norm_loss + angle_loss) + gama*(point_loss + energy_loss)
loss_dict = {
'total_loss': loss,
'cls_loss': alpha*cls_loss,
'distance loss': beta*dis_loss,
'dir_loss': theta*(norm_loss + angle_loss),
'norm_loss': theta*norm_loss,
'angle_loss': theta*angle_loss,
'point_loss': gama*point_loss,
'energy_loss': gama*energy_loss,
}
return loss_dict