Spaces:
Runtime error
Runtime error
from __future__ import absolute_import | |
import os | |
import sys | |
import numpy as np | |
import tensorflow as tf | |
import scipy.misc | |
try: | |
from StringIO import StringIO # Python 2.7 | |
except ImportError: | |
from io import BytesIO # Python 3.x | |
from .osutils import mkdir_if_missing | |
from config import get_args | |
global_args = get_args(sys.argv[1:]) | |
if global_args.run_on_remote: | |
import moxing as mox | |
mox.file.shift("os", "mox") | |
class Logger(object): | |
def __init__(self, fpath=None): | |
self.console = sys.stdout | |
self.file = None | |
if fpath is not None: | |
if global_args.run_on_remote: | |
dir_name = os.path.dirname(fpath) | |
if not mox.file.exists(dir_name): | |
mox.file.make_dirs(dir_name) | |
print('=> making dir ', dir_name) | |
self.file = mox.file.File(fpath, 'w') | |
# self.file = open(fpath, 'w') | |
else: | |
mkdir_if_missing(os.path.dirname(fpath)) | |
self.file = open(fpath, 'w') | |
def __del__(self): | |
self.close() | |
def __enter__(self): | |
pass | |
def __exit__(self, *args): | |
self.close() | |
def write(self, msg): | |
self.console.write(msg) | |
if self.file is not None: | |
self.file.write(msg) | |
def flush(self): | |
self.console.flush() | |
if self.file is not None: | |
self.file.flush() | |
os.fsync(self.file.fileno()) | |
def close(self): | |
self.console.close() | |
if self.file is not None: | |
self.file.close() | |
class TFLogger(object): | |
def __init__(self, log_dir=None): | |
"""Create a summary writer logging to log_dir.""" | |
if log_dir is not None: | |
mkdir_if_missing(log_dir) | |
self.writer = tf.summary.FileWriter(log_dir) | |
def scalar_summary(self, tag, value, step): | |
"""Log a scalar variable.""" | |
summary = tf.Summary(value=[tf.Summary.Value(tag=tag, simple_value=value)]) | |
self.writer.add_summary(summary, step) | |
self.writer.flush() | |
def image_summary(self, tag, images, step): | |
"""Log a list of images.""" | |
img_summaries = [] | |
for i, img in enumerate(images): | |
# Write the image to a string | |
try: | |
s = StringIO() | |
except: | |
s = BytesIO() | |
scipy.misc.toimage(img).save(s, format="png") | |
# Create an Image object | |
img_sum = tf.Summary.Image(encoded_image_string=s.getvalue(), | |
height=img.shape[0], | |
width=img.shape[1]) | |
# Create a Summary value | |
img_summaries.append(tf.Summary.Value(tag='%s/%d' % (tag, i), image=img_sum)) | |
# Create and write Summary | |
summary = tf.Summary(value=img_summaries) | |
self.writer.add_summary(summary, step) | |
self.writer.flush() | |
def histo_summary(self, tag, values, step, bins=1000): | |
"""Log a histogram of the tensor of values.""" | |
# Create a histogram using numpy | |
counts, bin_edges = np.histogram(values, bins=bins) | |
# Fill the fields of the histogram proto | |
hist = tf.HistogramProto() | |
hist.min = float(np.min(values)) | |
hist.max = float(np.max(values)) | |
hist.num = int(np.prod(values.shape)) | |
hist.sum = float(np.sum(values)) | |
hist.sum_squares = float(np.sum(values**2)) | |
# Drop the start of the first bin | |
bin_edges = bin_edges[1:] | |
# Add bin edges and counts | |
for edge in bin_edges: | |
hist.bucket_limit.append(edge) | |
for c in counts: | |
hist.bucket.append(c) | |
# Create and write Summary | |
summary = tf.Summary(value=[tf.Summary.Value(tag=tag, histo=hist)]) | |
self.writer.add_summary(summary, step) | |
self.writer.flush() | |
def close(self): | |
self.writer.close() |