shreyasvaidya's picture
Upload folder using huggingface_hub
01bb3bb verified
# Scene Text Recognition Model Hub
# Copyright 2022 Darwin Bautista
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from itertools import permutations
from typing import Any, Optional, Sequence
import numpy as np
import torch
import torch.nn.functional as F
from torch import Tensor
from pytorch_lightning.utilities.types import STEP_OUTPUT
from IndicPhotoOCR.utils.strhub.models.base import CrossEntropySystem
from .model import PARSeq as Model
class PARSeq(CrossEntropySystem):
def __init__(
self,
charset_train: str,
charset_test: str,
max_label_length: int,
batch_size: int,
lr: float,
warmup_pct: float,
weight_decay: float,
img_size: Sequence[int],
patch_size: Sequence[int],
embed_dim: int,
enc_num_heads: int,
enc_mlp_ratio: int,
enc_depth: int,
dec_num_heads: int,
dec_mlp_ratio: int,
dec_depth: int,
perm_num: int,
perm_forward: bool,
perm_mirrored: bool,
decode_ar: bool,
refine_iters: int,
dropout: float,
**kwargs: Any,
) -> None:
super().__init__(charset_train, charset_test, batch_size, lr, warmup_pct, weight_decay)
self.save_hyperparameters()
self.model = Model(
len(self.tokenizer),
max_label_length,
img_size,
patch_size,
embed_dim,
enc_num_heads,
enc_mlp_ratio,
enc_depth,
dec_num_heads,
dec_mlp_ratio,
dec_depth,
decode_ar,
refine_iters,
dropout,
)
# Perm/attn mask stuff
self.rng = np.random.default_rng()
self.max_gen_perms = perm_num // 2 if perm_mirrored else perm_num
self.perm_forward = perm_forward
self.perm_mirrored = perm_mirrored
def forward(self, images: Tensor, max_length: Optional[int] = None) -> Tensor:
return self.model.forward(self.tokenizer, images, max_length)
def gen_tgt_perms(self, tgt):
"""Generate shared permutations for the whole batch.
This works because the same attention mask can be used for the shorter sequences
because of the padding mask.
"""
# We don't permute the position of BOS, we permute EOS separately
max_num_chars = tgt.shape[1] - 2
# Special handling for 1-character sequences
if max_num_chars == 1:
return torch.arange(3, device=self._device).unsqueeze(0)
perms = [torch.arange(max_num_chars, device=self._device)] if self.perm_forward else []
# Additional permutations if needed
max_perms = math.factorial(max_num_chars)
if self.perm_mirrored:
max_perms //= 2
num_gen_perms = min(self.max_gen_perms, max_perms)
# For 4-char sequences and shorter, we generate all permutations and sample from the pool to avoid collisions
# Note that this code path might NEVER get executed since the labels in a mini-batch typically exceed 4 chars.
if max_num_chars < 5:
# Pool of permutations to sample from. We only need the first half (if complementary option is selected)
# Special handling for max_num_chars == 4 which correctly divides the pool into the flipped halves
if max_num_chars == 4 and self.perm_mirrored:
selector = [0, 3, 4, 6, 9, 10, 12, 16, 17, 18, 19, 21]
else:
selector = list(range(max_perms))
perm_pool = torch.as_tensor(
list(permutations(range(max_num_chars), max_num_chars)),
device=self._device,
)[selector]
# If the forward permutation is always selected, no need to add it to the pool for sampling
if self.perm_forward:
perm_pool = perm_pool[1:]
perms = torch.stack(perms)
if len(perm_pool):
i = self.rng.choice(len(perm_pool), size=num_gen_perms - len(perms), replace=False)
perms = torch.cat([perms, perm_pool[i]])
else:
perms.extend(
[torch.randperm(max_num_chars, device=self._device) for _ in range(num_gen_perms - len(perms))]
)
perms = torch.stack(perms)
if self.perm_mirrored:
# Add complementary pairs
comp = perms.flip(-1)
# Stack in such a way that the pairs are next to each other.
perms = torch.stack([perms, comp]).transpose(0, 1).reshape(-1, max_num_chars)
# NOTE:
# The only meaningful way of permuting the EOS position is by moving it one character position at a time.
# However, since the number of permutations = T! and number of EOS positions = T + 1, the number of possible EOS
# positions will always be much less than the number of permutations (unless a low perm_num is set).
# Thus, it would be simpler to just train EOS using the full and null contexts rather than trying to evenly
# distribute it across the chosen number of permutations.
# Add position indices of BOS and EOS
bos_idx = perms.new_zeros((len(perms), 1))
eos_idx = perms.new_full((len(perms), 1), max_num_chars + 1)
perms = torch.cat([bos_idx, perms + 1, eos_idx], dim=1)
# Special handling for the reverse direction. This does two things:
# 1. Reverse context for the characters
# 2. Null context for [EOS] (required for learning to predict [EOS] in NAR mode)
if len(perms) > 1:
perms[1, 1:] = max_num_chars + 1 - torch.arange(max_num_chars + 1, device=self._device)
return perms
def generate_attn_masks(self, perm):
"""Generate attention masks given a sequence permutation (includes pos. for bos and eos tokens)
:param perm: the permutation sequence. i = 0 is always the BOS
:return: lookahead attention masks
"""
sz = perm.shape[0]
mask = torch.zeros((sz, sz), dtype=torch.bool, device=self._device)
for i in range(sz):
query_idx = perm[i]
masked_keys = perm[i + 1 :]
mask[query_idx, masked_keys] = True
content_mask = mask[:-1, :-1].clone()
mask[torch.eye(sz, dtype=torch.bool, device=self._device)] = True # mask "self"
query_mask = mask[1:, :-1]
return content_mask, query_mask
def training_step(self, batch, batch_idx) -> STEP_OUTPUT:
images, labels = batch
tgt = self.tokenizer.encode(labels, self._device)
# Encode the source sequence (i.e. the image codes)
memory = self.model.encode(images)
# Prepare the target sequences (input and output)
tgt_perms = self.gen_tgt_perms(tgt)
tgt_in = tgt[:, :-1]
tgt_out = tgt[:, 1:]
# The [EOS] token is not depended upon by any other token in any permutation ordering
tgt_padding_mask = (tgt_in == self.pad_id) | (tgt_in == self.eos_id)
loss = 0
loss_numel = 0
n = (tgt_out != self.pad_id).sum().item()
for i, perm in enumerate(tgt_perms):
tgt_mask, query_mask = self.generate_attn_masks(perm)
out = self.model.decode(tgt_in, memory, tgt_mask, tgt_padding_mask, tgt_query_mask=query_mask)
logits = self.model.head(out).flatten(end_dim=1)
loss += n * F.cross_entropy(logits, tgt_out.flatten(), ignore_index=self.pad_id)
loss_numel += n
# After the second iteration (i.e. done with canonical and reverse orderings),
# remove the [EOS] tokens for the succeeding perms
if i == 1:
tgt_out = torch.where(tgt_out == self.eos_id, self.pad_id, tgt_out)
n = (tgt_out != self.pad_id).sum().item()
loss /= loss_numel
self.log('loss', loss)
return loss