Spaces:
Runtime error
Runtime error
# Scene Text Recognition Model Hub | |
# Copyright 2022 Darwin Bautista | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# https://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from functools import partial | |
from typing import Any, Optional, Sequence | |
import torch | |
import torch.nn.functional as F | |
from torch import Tensor | |
from pytorch_lightning.utilities.types import STEP_OUTPUT | |
from timm.models.helpers import named_apply | |
from strhub.models.base import CrossEntropySystem, CTCSystem | |
from strhub.models.utils import init_weights | |
from .model import TRBA as Model | |
class TRBA(CrossEntropySystem): | |
def __init__( | |
self, | |
charset_train: str, | |
charset_test: str, | |
max_label_length: int, | |
batch_size: int, | |
lr: float, | |
warmup_pct: float, | |
weight_decay: float, | |
img_size: Sequence[int], | |
num_fiducial: int, | |
output_channel: int, | |
hidden_size: int, | |
**kwargs: Any, | |
) -> None: | |
super().__init__(charset_train, charset_test, batch_size, lr, warmup_pct, weight_decay) | |
self.save_hyperparameters() | |
self.max_label_length = max_label_length | |
img_h, img_w = img_size | |
self.model = Model( | |
img_h, | |
img_w, | |
len(self.tokenizer), | |
num_fiducial, | |
output_channel=output_channel, | |
hidden_size=hidden_size, | |
use_ctc=False, | |
) | |
named_apply(partial(init_weights, exclude=['Transformation.LocalizationNetwork.localization_fc2']), self.model) | |
def no_weight_decay(self): | |
return {'model.Prediction.char_embeddings.weight'} | |
def forward(self, images: Tensor, max_length: Optional[int] = None) -> Tensor: | |
max_length = self.max_label_length if max_length is None else min(max_length, self.max_label_length) | |
text = images.new_full([1], self.bos_id, dtype=torch.long) | |
return self.model.forward(images, max_length, text) | |
def training_step(self, batch, batch_idx) -> STEP_OUTPUT: | |
images, labels = batch | |
encoded = self.tokenizer.encode(labels, self.device) | |
inputs = encoded[:, :-1] # remove <eos> | |
targets = encoded[:, 1:] # remove <bos> | |
max_length = encoded.shape[1] - 2 # exclude <bos> and <eos> from count | |
logits = self.model.forward(images, max_length, inputs) | |
loss = F.cross_entropy(logits.flatten(end_dim=1), targets.flatten(), ignore_index=self.pad_id) | |
self.log('loss', loss) | |
return loss | |
class TRBC(CTCSystem): | |
def __init__( | |
self, | |
charset_train: str, | |
charset_test: str, | |
max_label_length: int, | |
batch_size: int, | |
lr: float, | |
warmup_pct: float, | |
weight_decay: float, | |
img_size: Sequence[int], | |
num_fiducial: int, | |
output_channel: int, | |
hidden_size: int, | |
**kwargs: Any, | |
) -> None: | |
super().__init__(charset_train, charset_test, batch_size, lr, warmup_pct, weight_decay) | |
self.save_hyperparameters() | |
self.max_label_length = max_label_length | |
img_h, img_w = img_size | |
self.model = Model( | |
img_h, | |
img_w, | |
len(self.tokenizer), | |
num_fiducial, | |
output_channel=output_channel, | |
hidden_size=hidden_size, | |
use_ctc=True, | |
) | |
named_apply(partial(init_weights, exclude=['Transformation.LocalizationNetwork.localization_fc2']), self.model) | |
def forward(self, images: Tensor, max_length: Optional[int] = None) -> Tensor: | |
# max_label_length is unused in CTC prediction | |
return self.model.forward(images, None) | |
def training_step(self, batch, batch_idx) -> STEP_OUTPUT: | |
images, labels = batch | |
loss = self.forward_logits_loss(images, labels)[1] | |
self.log('loss', loss) | |
return loss | |