import torch.nn as nn import math import torch.utils.model_zoo as model_zoo BatchNorm2d = nn.BatchNorm2d __all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101', 'resnet152'] model_urls = { 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth', 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth', } def constant_init(module, constant, bias=0): nn.init.constant_(module.weight, constant) if hasattr(module, 'bias'): nn.init.constant_(module.bias, bias) def conv3x3(in_planes, out_planes, stride=1): """3x3 convolution with padding""" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) class BasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None, dcn=None): super(BasicBlock, self).__init__() self.with_dcn = dcn is not None self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = BatchNorm2d(planes) self.relu = nn.ReLU(inplace=True) self.with_modulated_dcn = False if self.with_dcn: fallback_on_stride = dcn.get('fallback_on_stride', False) self.with_modulated_dcn = dcn.get('modulated', False) # self.conv2 = conv3x3(planes, planes) if not self.with_dcn or fallback_on_stride: self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, padding=1, bias=False) else: deformable_groups = dcn.get('deformable_groups', 1) if not self.with_modulated_dcn: from network.backbone.assets.dcn import DeformConv conv_op = DeformConv offset_channels = 18 else: from network.backbone.assets.dcn import ModulatedDeformConv conv_op = ModulatedDeformConv offset_channels = 27 self.conv2_offset = nn.Conv2d( planes, deformable_groups * offset_channels, kernel_size=3, padding=1) self.conv2 = conv_op( planes, planes, kernel_size=3, padding=1, deformable_groups=deformable_groups, bias=False) self.bn2 = BatchNorm2d(planes) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) # out = self.conv2(out) if not self.with_dcn: out = self.conv2(out) elif self.with_modulated_dcn: offset_mask = self.conv2_offset(out) offset = offset_mask[:, :18, :, :] mask = offset_mask[:, -9:, :, :].sigmoid() out = self.conv2(out, offset, mask) else: offset = self.conv2_offset(out) out = self.conv2(out, offset) out = self.bn2(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None, dcn=None): super(Bottleneck, self).__init__() self.with_dcn = dcn is not None self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) self.bn1 = BatchNorm2d(planes) fallback_on_stride = False self.with_modulated_dcn = False if self.with_dcn: fallback_on_stride = dcn.get('fallback_on_stride', False) self.with_modulated_dcn = dcn.get('modulated', False) if not self.with_dcn or fallback_on_stride: self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) else: deformable_groups = dcn.get('deformable_groups', 1) if not self.with_modulated_dcn: from network.backbone.assets.dcn import DeformConv conv_op = DeformConv offset_channels = 18 else: from network.backbone.assets.dcn import ModulatedDeformConv conv_op = ModulatedDeformConv offset_channels = 27 self.conv2_offset = nn.Conv2d( planes, deformable_groups * offset_channels, kernel_size=3, padding=1) self.conv2 = conv_op( planes, planes, kernel_size=3, padding=1, stride=stride, deformable_groups=deformable_groups, bias=False) self.bn2 = BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) self.bn3 = BatchNorm2d(planes * 4) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride self.dcn = dcn self.with_dcn = dcn is not None def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) # out = self.conv2(out) if not self.with_dcn: out = self.conv2(out) elif self.with_modulated_dcn: offset_mask = self.conv2_offset(out) offset = offset_mask[:, :18, :, :] mask = offset_mask[:, -9:, :, :].sigmoid() out = self.conv2(out, offset, mask) else: offset = self.conv2_offset(out) out = self.conv2(out, offset) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class ResNet(nn.Module): def __init__(self, block, layers, num_classes=1000, dcn=None, stage_with_dcn=(False, False, False, False)): self.dcn = dcn self.stage_with_dcn = stage_with_dcn self.inplanes = 64 super(ResNet, self).__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer( block, 128, layers[1], stride=2, dcn=dcn) self.layer3 = self._make_layer( block, 256, layers[2], stride=2, dcn=dcn) self.layer4 = self._make_layer( block, 512, layers[3], stride=2, dcn=dcn) self.avgpool = nn.AvgPool2d(7, stride=1) self.fc = nn.Linear(512 * block.expansion, num_classes) self.smooth = nn.Conv2d(2048, 256, kernel_size=1, stride=1, padding=1) for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() if self.dcn is not None: for m in self.modules(): if isinstance(m, Bottleneck) or isinstance(m, BasicBlock): if hasattr(m, 'conv2_offset'): constant_init(m.conv2_offset, 0) def _make_layer(self, block, planes, blocks, stride=1, dcn=None): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), BatchNorm2d(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample, dcn=dcn)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes, dcn=dcn)) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x1 = self.maxpool(x) x2 = self.layer1(x1) x3 = self.layer2(x2) x4 = self.layer3(x3) x5 = self.layer4(x4) return x1, x2, x3, x4, x5 def resnet18(pretrained=True, **kwargs): """Constructs a ResNet-18 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs) if pretrained: model.load_state_dict(model_zoo.load_url( model_urls['resnet18']), strict=False) return model def deformable_resnet18(pretrained=True, **kwargs): """Constructs a ResNet-18 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(BasicBlock, [2, 2, 2, 2], dcn=dict(modulated=True, deformable_groups=1, fallback_on_stride=False), stage_with_dcn=[False, True, True, True], **kwargs) if pretrained: model.load_state_dict(model_zoo.load_url( model_urls['resnet18']), strict=False) return model def resnet34(pretrained=True, **kwargs): """Constructs a ResNet-34 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(BasicBlock, [3, 4, 6, 3], **kwargs) if pretrained: model.load_state_dict(model_zoo.load_url( model_urls['resnet34']), strict=False) return model def resnet50(pretrained=True, **kwargs): """Constructs a ResNet-50 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs) if pretrained: model.load_state_dict(model_zoo.load_url( model_urls['resnet50']), strict=False) return model def deformable_resnet50(pretrained=True, **kwargs): """Constructs a ResNet-50 model with deformable conv. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(Bottleneck, [3, 4, 6, 3], dcn=dict(modulated=True, deformable_groups=1, fallback_on_stride=False), stage_with_dcn=[False, True, True, True], **kwargs) if pretrained: model.load_state_dict(model_zoo.load_url( model_urls['resnet50']), strict=False) return model def resnet101(pretrained=True, **kwargs): """Constructs a ResNet-101 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(Bottleneck, [3, 4, 23, 3], **kwargs) if pretrained: model.load_state_dict(model_zoo.load_url( model_urls['resnet101']), strict=False) return model def resnet152(pretrained=True, **kwargs): """Constructs a ResNet-152 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(Bottleneck, [3, 8, 36, 3], **kwargs) if pretrained: model.load_state_dict(model_zoo.load_url( model_urls['resnet152']), strict=False) return model