################################################################### # File Name: GCN.py # Author: S.X.Zhang ################################################################### from __future__ import print_function from __future__ import division from __future__ import absolute_import import torch import torch.nn as nn import torch.nn.functional as F from torch.nn import init class MeanAggregator(nn.Module): def __init__(self): super(MeanAggregator, self).__init__() def forward(self, features, A): x = torch.bmm(A, features) return x class GraphConv(nn.Module): def __init__(self, in_dim, out_dim, agg): super(GraphConv, self).__init__() self.in_dim = in_dim self.out_dim = out_dim self.weight = nn.Parameter(torch.FloatTensor(in_dim * 2, out_dim)) self.bias = nn.Parameter(torch.FloatTensor(out_dim)) init.xavier_uniform_(self.weight) init.constant_(self.bias, 0) self.agg = agg() def forward(self, features, A): b, n, d = features.shape assert (d == self.in_dim) agg_feats = self.agg(features, A) cat_feats = torch.cat([features, agg_feats], dim=2) out = torch.einsum('bnd,df->bnf', (cat_feats, self.weight)) out = F.relu(out + self.bias) return out class GCN(nn.Module): def __init__(self, in_dim, out_dim): super(GCN, self).__init__() self.bn0 = nn.BatchNorm1d(in_dim, affine=False) self.conv1 = GraphConv(in_dim, 256, MeanAggregator) self.conv2 = GraphConv(256, 1024, MeanAggregator) self.conv3 = GraphConv(1024, 512, MeanAggregator) self.conv4 = GraphConv(512, out_dim, MeanAggregator) self.prediction = nn.Sequential( nn.Conv1d(out_dim, 128, 1), nn.ReLU(inplace=True), nn.Conv1d(128, 64, 1), nn.ReLU(inplace=True), nn.Conv1d(64, 2, 1)) def forward(self, x, A): x = self.bn0(x) x = x.permute(0, 2, 1) b, n, c = x.shape A = A.expand(b, n, n) x = self.conv1(x, A) x = self.conv2(x, A) x = self.conv3(x, A) x = self.conv4(x, A) x = x.permute(0, 2, 1) pred = self.prediction(x) return pred