import torch import torch.nn as nn from torchvision.models import resnet import torch.utils.model_zoo as model_zoo from IndicPhotoOCR.detection.textbpn.cfglib.config import config as cfg model_urls = { 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth', 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth', } class ResNet(nn.Module): def __init__(self, name="resnet50", pretrain=True): super().__init__() if name == "resnet50": base_net = resnet.resnet50(pretrained=False) elif name == "resnet101": base_net = resnet.resnet101(pretrained=False) elif name == "resnet18": base_net = resnet.resnet18(pretrained=False) elif name == "resnet34": base_net = resnet.resnet34(pretrained=False) else: print(" base model is not support !") if pretrain: print("load the {} weight from ./cache".format(name)) base_net.load_state_dict(model_zoo.load_url(model_urls[name], model_dir="./cache", map_location=torch.device(cfg.device)), strict=False) # print(base_net) self.stage1 = nn.Sequential( base_net.conv1, base_net.bn1, base_net.relu, base_net.maxpool ) self.stage2 = base_net.layer1 self.stage3 = base_net.layer2 self.stage4 = base_net.layer3 self.stage5 = base_net.layer4 self.up2 = nn.ConvTranspose2d(64, 64, kernel_size=4, stride=2, padding=1) def forward(self, x): C1 = self.stage1(x) C2 = self.stage2(C1) C3 = self.stage3(C2) C4 = self.stage4(C3) C5 = self.stage5(C4) if cfg.scale == 2 or cfg.scale == 1: # up2 --> 1/2 C1 = self.up2(C1) return C1, C2, C3, C4, C5 if __name__ == '__main__': import torch input = torch.randn((4, 3, 512, 512)) net = ResNet() C1, C2, C3, C4, C5 = net(input) print(C1.size()) print(C2.size()) print(C3.size()) print(C4.size()) print(C5.size())