# -*- coding: utf-8 -*- # @Time : 10/1/21 # @Author : GXYM import torch import torch.nn as nn from cfglib.config import config as cfg from network.Seg_loss import SegmentLoss from network.Reg_loss import PolyMatchingLoss class TextLoss(nn.Module): def __init__(self): super().__init__() self.MSE_loss = torch.nn.MSELoss(reduce=False, size_average=False) self.BCE_loss = torch.nn.BCELoss(reduce=False, size_average=False) self.PolyMatchingLoss = PolyMatchingLoss(cfg.num_points, cfg.device) self.KL_loss = torch.nn.KLDivLoss(reduce=False, size_average=False) @staticmethod def single_image_loss(pre_loss, loss_label): batch_size = pre_loss.shape[0] sum_loss = torch.mean(pre_loss.view(-1)) * 0 pre_loss = pre_loss.view(batch_size, -1) loss_label = loss_label.view(batch_size, -1) eps = 0.001 for i in range(batch_size): average_number = 0 positive_pixel = len(pre_loss[i][(loss_label[i] >= eps)]) average_number += positive_pixel if positive_pixel != 0: posi_loss = torch.mean(pre_loss[i][(loss_label[i] >= eps)]) sum_loss += posi_loss if len(pre_loss[i][(loss_label[i] < eps)]) < 3 * positive_pixel: nega_loss = torch.mean(pre_loss[i][(loss_label[i] < eps)]) average_number += len(pre_loss[i][(loss_label[i] < eps)]) else: nega_loss = torch.mean(torch.topk(pre_loss[i][(loss_label[i] < eps)], 3 * positive_pixel)[0]) average_number += 3 * positive_pixel sum_loss += nega_loss else: nega_loss = torch.mean(torch.topk(pre_loss[i], 100)[0]) average_number += 100 sum_loss += nega_loss # sum_loss += loss/average_number return sum_loss/batch_size def cls_ohem(self, predict, target, train_mask, negative_ratio=3.): pos = (target * train_mask).bool() neg = ((1 - target) * train_mask).bool() n_pos = pos.float().sum() if n_pos.item() > 0: loss_pos = self.BCE_loss(predict[pos], target[pos]).sum() loss_neg = self.BCE_loss(predict[neg], target[neg]) n_neg = min(int(neg.float().sum().item()), int(negative_ratio * n_pos.float())) else: loss_pos = torch.tensor(0.) loss_neg = self.BCE_loss(predict[neg], target[neg]) n_neg = 100 loss_neg, _ = torch.topk(loss_neg, n_neg) return (loss_pos + loss_neg.sum()) / (n_pos + n_neg).float() @staticmethod def loss_calc_flux(pred_flux, gt_flux, weight_matrix, mask, train_mask): # norm loss gt_flux = 0.999999 * gt_flux / (gt_flux.norm(p=2, dim=1).unsqueeze(1) + 1e-9) norm_loss = weight_matrix * torch.sum((pred_flux - gt_flux) ** 2, dim=1)*train_mask norm_loss = norm_loss.sum(-1).mean() # angle loss mask = train_mask * mask pred_flux = 0.999999 * pred_flux / (pred_flux.norm(p=2, dim=1).unsqueeze(1) + 1e-9) # angle_loss = weight_matrix * (torch.acos(torch.sum(pred_flux * gt_flux, dim=1))) ** 2 # angle_loss = angle_loss.sum(-1).mean() angle_loss = (1 - torch.cosine_similarity(pred_flux, gt_flux, dim=1)) angle_loss = angle_loss[mask].mean() return norm_loss, angle_loss def forward(self, input_dict, output_dict, eps=None): """ calculate boundary proposal network loss """ # tr_mask = tr_mask.permute(0, 3, 1, 2).contiguous() fy_preds = output_dict["fy_preds"] py_preds = output_dict["py_preds"] inds = output_dict["inds"] train_mask = input_dict['train_mask'] tr_mask = input_dict['tr_mask'] > 0 distance_field = input_dict['distance_field'] direction_field = input_dict['direction_field'] weight_matrix = input_dict['weight_matrix'] gt_tags = input_dict['gt_points'] # pixel class loss cls_loss = self.cls_ohem(fy_preds[:, 0, :, :], tr_mask.float(), train_mask.bool()) # distance field loss dis_loss = self.MSE_loss(fy_preds[:, 1, :, :], distance_field) dis_loss = torch.mul(dis_loss, train_mask.float()) dis_loss = self.single_image_loss(dis_loss, distance_field) # direction field loss norm_loss, angle_loss = self.loss_calc_flux(fy_preds[:, 2:4, :, :], direction_field, weight_matrix, tr_mask, train_mask) # boundary point loss point_loss = self.PolyMatchingLoss(py_preds, gt_tags[inds]) if eps is None: loss_b = 0.05*point_loss loss = cls_loss + 3.0*dis_loss + norm_loss + angle_loss + loss_b else: loss_b = 0.1*(torch.sigmoid(torch.tensor((eps - cfg.max_epoch)/cfg.max_epoch))) * point_loss loss = cls_loss + 3.0*dis_loss + norm_loss + angle_loss + loss_b loss_dict = { 'total_loss': loss, 'cls_loss': cls_loss, 'distance loss': 3.0*dis_loss, 'dir_loss': norm_loss + angle_loss, 'point_loss': loss_b, 'norm_loss': norm_loss, 'angle_loss': angle_loss, } return loss_dict