from easydict import EasyDict import torch import os config = EasyDict() # Normalize image config.means = (0.485, 0.456, 0.406) config.stds = (0.229, 0.224, 0.225) config.gpu = "1" # Experiment name # config.exp_name = "Synthtext" # dataloader jobs number config.num_workers = 24 # batch_size config.batch_size = 12 # training epoch number config.max_epoch = 200 config.start_epoch = 0 # learning rate config.lr = 1e-4 # using GPU config.cuda = False config.output_dir = 'output' config.input_size = 640 # max polygon per image # synText, total-text:64; CTW1500: 64; icdar: 64; MLT: 32; TD500: 64. config.max_annotation = 64 # adj num for graph config.adj_num = 4 # control points number config.num_points = 20 # use hard examples (annotated as '#') config.use_hard = True # Load data into memory at one time config.load_memory = False # prediction on 1/scale feature map config.scale = 1 # # clip gradient of loss config.grad_clip = 25 # demo tcl threshold config.dis_threshold = 0.4 config.cls_threshold = 0.8 # Contour approximation factor config.approx_factor = 0.004 def update_config(config, extra_config): for k, v in vars(extra_config).items(): config[k] = v # print(config.gpu) # config.device = torch.device('cuda') if config.cuda else torch.device('cpu') config.device = torch.device('cpu') def print_config(config): print('==========Options============') for k, v in config.items(): print('{}: {}'.format(k, v)) print('=============End=============') ################### MY Settings ################## config.resume=True config.device="cpu" # config.test_size = [224, 224]