import argparse import torch import os import torch.backends.cudnn as cudnn from datetime import datetime def str2bool(v): return v.lower() in ("yes", "true", "t", "1") def arg2str(args): args_dict = vars(args) option_str = datetime.now().strftime('%b%d_%H-%M-%S') + '\n' for k, v in sorted(args_dict.items()): option_str += ('{}: {}\n'.format(str(k), str(v))) return option_str class BaseOptions(object): def __init__(self): self.parser = argparse.ArgumentParser() # basic opts self.parser.add_argument('--exp_name', default="TD500", type=str, choices=['Synthtext', 'Totaltext', 'Ctw1500','Icdar2015', "MLT2017", 'TD500', "MLT2019", "ArT", "ALL"], help='Experiment name') self.parser.add_argument("--gpu", default="1", help="set gpu id", type=str) self.parser.add_argument('--resume', default=None, type=str, help='Path to target resume checkpoint') self.parser.add_argument('--num_workers', default=24, type=int, help='Number of workers used in dataloading') self.parser.add_argument('--cuda', default=True, type=str2bool, help='Use cuda to train model') self.parser.add_argument('--mgpu', action='store_true', help='Use multi-gpu to train model') self.parser.add_argument('--save_dir', default='./model/', help='Path to save checkpoint models') self.parser.add_argument('--vis_dir', default='./vis/', help='Path to save visualization images') self.parser.add_argument('--log_dir', default='./logs/', help='Path to tensorboard log') self.parser.add_argument('--loss', default='CrossEntropyLoss', type=str, help='Training Loss') # self.parser.add_argument('--input_channel', default=1, type=int, help='number of input channels' ) self.parser.add_argument('--pretrain', default=False, type=str2bool, help='Pretrained AutoEncoder model') self.parser.add_argument('--verbose', '-v', default=True, type=str2bool, help='Whether to output debug info') self.parser.add_argument('--viz', action='store_true', help='Whether to output debug info') # self.parser.add_argument('--viz', default=True, type=str2bool, help='Whether to output debug info') # train opts self.parser.add_argument('--max_epoch', default=250, type=int, help='Max epochs') self.parser.add_argument('--lr', '--learning-rate', default=1e-3, type=float, help='initial learning rate') self.parser.add_argument('--lr_adjust', default='fix', choices=['fix', 'poly'], type=str, help='Learning Rate Adjust Strategy') self.parser.add_argument('--stepvalues', default=[], nargs='+', type=int, help='# of iter to change lr') self.parser.add_argument('--weight_decay', '--wd', default=0., type=float, help='Weight decay for SGD') self.parser.add_argument('--gamma', default=0.1, type=float, help='Gamma update for SGD lr') self.parser.add_argument('--momentum', default=0.9, type=float, help='momentum') self.parser.add_argument('--batch_size', default=6, type=int, help='Batch size for training') self.parser.add_argument('--optim', default='Adam', type=str, choices=['SGD', 'Adam'], help='Optimizer') self.parser.add_argument('--save_freq', default=5, type=int, help='save weights every # epoch') self.parser.add_argument('--display_freq', default=10, type=int, help='display training metrics every # iter') self.parser.add_argument('--viz_freq', default=50, type=int, help='visualize training process every # iter') self.parser.add_argument('--log_freq', default=10000, type=int, help='log to tensorboard every # iterations') self.parser.add_argument('--val_freq', default=1000, type=int, help='do validation every # iterations') # backbone self.parser.add_argument('--scale', default=1, type=int, help='prediction on 1/scale feature map') self.parser.add_argument('--net', default='resnet50', type=str, choices=['vgg', 'resnet50', 'resnet18', "deformable_resnet18", "deformable_resnet50"], help='Network architecture') # data args self.parser.add_argument('--load_memory', default=False, type=str2bool, help='Load data into memory') self.parser.add_argument('--rescale', type=float, default=255.0, help='rescale factor') self.parser.add_argument('--input_size', default=640, type=int, help='model input size') self.parser.add_argument('--test_size', default=[640, 960], type=int, nargs='+', help='test size') # eval args00 self.parser.add_argument('--checkepoch', default=1070, type=int, help='Load checkpoint number') self.parser.add_argument('--start_epoch', default=0, type=int, help='start epoch number') self.parser.add_argument('--cls_threshold', default=0.875, type=float, help='threshold of pse') self.parser.add_argument('--dis_threshold', default=0.35, type=float, help='filter the socre < score_i') # demo args self.parser.add_argument('--img_root', default=None, type=str, help='Path to deploy images') def parse(self, fixed=None): if fixed is not None: args = self.parser.parse_args(fixed) else: args = self.parser.parse_args() return args def initialize(self, fixed=None): # Parse options self.args = self.parse(fixed) os.environ['CUDA_VISIBLE_DEVICES'] = self.args.gpu # Setting default torch Tensor type if self.args.cuda and torch.cuda.is_available(): torch.set_default_tensor_type('torch.cuda.FloatTensor') cudnn.benchmark = True else: torch.set_default_tensor_type('torch.FloatTensor') # Create weights saving directory if not os.path.exists(self.args.save_dir): os.mkdir(self.args.save_dir) # Create weights saving directory of target model model_save_path = os.path.join(self.args.save_dir, self.args.exp_name) if not os.path.exists(model_save_path): os.mkdir(model_save_path) return self.args def update(self, args, extra_options): for k, v in extra_options.items(): setattr(args, k, v)