import numpy as np import errno import os import cv2 import math from shapely.geometry import Polygon from IndicPhotoOCR.detection.textbpn.cfglib.config import config as cfg from scipy import ndimage as ndimg def to_device(*tensors): if len(tensors) < 2: return tensors[0].to(cfg.device, non_blocking=True) return (t.to(cfg.device, non_blocking=True) for t in tensors) def mkdirs(newdir): """ make directory with parent path :param newdir: target path """ try: if not os.path.exists(newdir): os.makedirs(newdir) except OSError as err: # Reraise the error unless it's about an already existing directory if err.errno != errno.EEXIST or not os.path.isdir(newdir): raise def rescale_result(image, bbox_contours, H, W): ori_H, ori_W = image.shape[:2] image = cv2.resize(image, (W, H)) contours = list() for cont in bbox_contours: # if cv2.contourArea(cont) < 300: # continue cont[:, 0] = (cont[:, 0] * W / ori_W).astype(int) cont[:, 1] = (cont[:, 1] * H / ori_H).astype(int) contours.append(cont) return image, contours def fill_hole(input_mask): h, w = input_mask.shape canvas = np.zeros((h + 2, w + 2), np.uint8) canvas[1:h + 1, 1:w + 1] = input_mask.copy() mask = np.zeros((h + 4, w + 4), np.uint8) cv2.floodFill(canvas, mask, (0, 0), 1) canvas = canvas[1:h + 1, 1:w + 1].astype(np.bool) return (~canvas | input_mask.astype(np.uint8)) def regularize_sin_cos(sin, cos): # regularization scale = np.sqrt(1.0 / (sin ** 2 + cos ** 2)) return sin * scale, cos * scale def gaussian2D(shape, sigma=1): m, n = [(ss - 1.) / 2. for ss in shape] y, x = np.ogrid[-m:m + 1, -n:n + 1] h = np.exp(-(x * x + y * y) / (2 * sigma * sigma)) h[h < np.finfo(h.dtype).eps * h.max()] = 0 return h def draw_gaussian(heatmap, center, radius, k=1, delte=6): diameter = 2 * radius + 1 gaussian = gaussian2D((diameter, diameter), sigma=diameter / delte) x, y = center height, width = heatmap.shape[0:2] left, right = min(x, radius), min(width - x, radius + 1) top, bottom = min(y, radius), min(height - y, radius + 1) masked_heatmap = heatmap[y - top:y + bottom, x - left:x + right] masked_gaussian = gaussian[radius - top:radius + bottom, radius - left:radius + right] np.maximum(masked_heatmap, masked_gaussian * k, out=masked_heatmap) def gaussian_radius(det_size, min_overlap=0.7): height, width = det_size a1 = 1 b1 = (height + width) c1 = width * height * (1 - min_overlap) / (1 + min_overlap) sq1 = np.sqrt(b1 ** 2 - 4 * a1 * c1) r1 = (b1 + sq1) / 2 a2 = 4 b2 = 2 * (height + width) c2 = (1 - min_overlap) * width * height sq2 = np.sqrt(b2 ** 2 - 4 * a2 * c2) r2 = (b2 + sq2) / 2 a3 = 4 * min_overlap b3 = -2 * min_overlap * (height + width) c3 = (min_overlap - 1) * width * height sq3 = np.sqrt(b3 ** 2 - 4 * a3 * c3) r3 = (b3 + sq3) / 2 return min(r1, r2, r3) def point_dist_to_line(line, p3): # 计算点到直线的距离 # line = (p1, p2) # compute the distance from p3 to p1-p2 #cross(x,y)矩阵的叉积,norm()求范数 # np.linalg.norm(np.cross(p2 - p1, p1 - p3)) * 1.0 / np.linalg.norm(p2 - p1) # compute the distance from p3 to p1-p2 p1, p2 = line d = p2 - p1 def l2(p): return math.sqrt(p[0] * p[0]+ p[1]*p[1]) if l2(d) > 0: distance = abs(d[1] * p3[0] - d[0] * p3[1] + p2[0] * p1[1] - p2[1] * p1[0]) / l2(d) else: distance = math.sqrt((p3[0]-p2[0])**2 + (p3[1]-p2[1])**2) return distance class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self): self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def norm2(x, axis=None): if axis: return np.sqrt(np.sum(x ** 2, axis=axis)) return np.sqrt(np.sum(x ** 2)) def cos(p1, p2): return (p1 * p2).sum() / (norm2(p1) * norm2(p2)) def vector_sin(v): assert len(v) == 2 # sin = y / (sqrt(x^2 + y^2)) l = np.sqrt(v[0] ** 2 + v[1] ** 2) + 1e-5 return v[1] / l def vector_cos(v): assert len(v) == 2 # cos = x / (sqrt(x^2 + y^2)) l = np.sqrt(v[0] ** 2 + v[1] ** 2) + 1e-5 return v[0] / l def find_bottom(pts): if len(pts) > 4: e = np.concatenate([pts, pts[:3]]) candidate = [] for i in range(1, len(pts) + 1): v_prev = e[i] - e[i - 1] v_next = e[i + 2] - e[i + 1] if cos(v_prev, v_next) < -0.875: candidate.append((i % len(pts), (i + 1) % len(pts), norm2(e[i] - e[i + 1]))) if len(candidate) != 2 or candidate[0][0] == candidate[1][1] or candidate[0][1] == candidate[1][0]: # if candidate number < 2, or two bottom are joined, select 2 farthest edge mid_list = [] dist_list = [] if len(candidate) > 2: bottom_idx = np.argsort([angle for s1, s2, angle in candidate])[0:2] bottoms = [candidate[bottom_idx[0]][:2], candidate[bottom_idx[1]][0:2]] long_edge1, long_edge2 = find_long_edges(pts, bottoms) edge_length1 = [norm2(pts[e1] - pts[e2]) for e1, e2 in long_edge1] edge_length2 = [norm2(pts[e1] - pts[e2]) for e1, e2 in long_edge2] l1 = sum(edge_length1) l2 = sum(edge_length2) len1 = len(edge_length1) len2 = len(edge_length2) if l1 > 2*l2 or l2 > 2*l1 or len1 == 0 or len2 == 0: for i in range(len(pts)): mid_point = (e[i] + e[(i + 1) % len(pts)]) / 2 mid_list.append((i, (i + 1) % len(pts), mid_point)) for i in range(len(pts)): for j in range(len(pts)): s1, e1, mid1 = mid_list[i] s2, e2, mid2 = mid_list[j] dist = norm2(mid1 - mid2) dist_list.append((s1, e1, s2, e2, dist)) bottom_idx = np.argsort([dist for s1, e1, s2, e2, dist in dist_list])[-1] bottoms = [dist_list[bottom_idx][:2], dist_list[bottom_idx][2:4]] else: mid_list = [] for i in range(len(pts)): mid_point = (e[i] + e[(i + 1) % len(pts)]) / 2 mid_list.append((i, (i + 1) % len(pts), mid_point)) dist_list = [] for i in range(len(pts)): for j in range(len(pts)): s1, e1, mid1 = mid_list[i] s2, e2, mid2 = mid_list[j] dist = norm2(mid1 - mid2) dist_list.append((s1, e1, s2, e2, dist)) bottom_idx = np.argsort([dist for s1, e1, s2, e2, dist in dist_list])[-2:] bottoms = [dist_list[bottom_idx[0]][:2], dist_list[bottom_idx[1]][:2]] else: bottoms = [candidate[0][:2], candidate[1][:2]] else: d1 = norm2(pts[1] - pts[0]) + norm2(pts[2] - pts[3]) d2 = norm2(pts[2] - pts[1]) + norm2(pts[0] - pts[3]) bottoms = [(0, 1), (2, 3)] if d1 < d2 else [(1, 2), (3, 0)] # bottoms = [(0, 1), (2, 3)] if 2 * d1 < d2 and d1 > 32 else [(1, 2), (3, 0)] assert len(bottoms) == 2, 'fewer than 2 bottoms' return bottoms def split_long_edges(points, bottoms): """ Find two long edge sequence of and polygon """ b1_start, b1_end = bottoms[0] b2_start, b2_end = bottoms[1] n_pts = len(points) i = b1_end + 1 long_edge_1 = [] while i % n_pts != b2_end: long_edge_1.append((i - 1, i)) i = (i + 1) % n_pts i = b2_end + 1 long_edge_2 = [] while i % n_pts != b1_end: long_edge_2.append((i - 1, i)) i = (i + 1) % n_pts return long_edge_1, long_edge_2 def find_long_edges(points, bottoms): b1_start, b1_end = bottoms[0] b2_start, b2_end = bottoms[1] n_pts = len(points) i = (b1_end + 1) % n_pts long_edge_1 = [] while i % n_pts != b2_end: start = (i - 1) % n_pts end = i % n_pts long_edge_1.append((start, end)) i = (i + 1) % n_pts i = (b2_end + 1) % n_pts long_edge_2 = [] while i % n_pts != b1_end: start = (i - 1) % n_pts end = i % n_pts long_edge_2.append((start, end)) i = (i + 1) % n_pts return long_edge_1, long_edge_2 def split_edge_seqence(points, n_parts): pts_num = points.shape[0] long_edge = [(i, (i + 1) % pts_num) for i in range(pts_num)] edge_length = [norm2(points[e1] - points[e2]) for e1, e2 in long_edge] point_cumsum = np.cumsum([0] + edge_length) total_length = sum(edge_length) length_per_part = total_length / n_parts cur_node = 0 # first point splited_result = [] for i in range(1, n_parts): cur_end = i * length_per_part while cur_end > point_cumsum[cur_node + 1]: cur_node += 1 e1, e2 = long_edge[cur_node] e1, e2 = points[e1], points[e2] # start_point = points[long_edge[cur_node]] end_shift = cur_end - point_cumsum[cur_node] ratio = end_shift / edge_length[cur_node] new_point = e1 + ratio * (e2 - e1) # print(cur_end, point_cumsum[cur_node], end_shift, edge_length[cur_node], '=', new_point) splited_result.append(new_point) # add first and last point p_first = points[long_edge[0][0]] p_last = points[long_edge[-1][1]] splited_result = [p_first] + splited_result + [p_last] return np.stack(splited_result) def split_edge_seqence_with_cell_division(points, n_parts): points_seq = list(points) pts_num = len(points_seq) if pts_num <= n_parts: long_edge = [(i, (i + 1) % pts_num) for i in range(pts_num)] edge_length = [int(norm2(points[e1] - points[e2])) for e1, e2 in long_edge] while pts_num < n_parts: e = np.argmax(np.array(edge_length)) new_pts = (points_seq[e] + points_seq[(e+1) % pts_num])*0.5 points_seq.insert(e+1, new_pts) d = int(0.5 * (edge_length[e]-1)) edge_length[e] = d edge_length.insert(e+1, d) pts_num = len(points_seq) else: pass return np.stack(points_seq).astype(int) def split_edge_seqence_by_step(points, long_edge1, long_edge2, step=16.0): edge_length1 = [norm2(points[e1] - points[e2]) for e1, e2 in long_edge1] edge_length2 = [norm2(points[e1] - points[e2]) for e1, e2 in long_edge2] # 取长边 计算bbox个数 total_length = (sum(edge_length1)+sum(edge_length2))/2 n_parts = math.ceil(float(total_length) / step) try: inner1 = split_edge_seqence(points, long_edge1, n_parts=n_parts) inner2 = split_edge_seqence(points, long_edge2, n_parts=n_parts) except: print(edge_length1) print(edge_length2) return inner1, inner2 def disjoint_find(x, F): if F[x] == x: return x F[x] = disjoint_find(F[x], F) return F[x] def disjoint_merge(x, y, F): x = disjoint_find(x, F) y = disjoint_find(y, F) if x == y: return False F[y] = x return True def merge_polygons(polygons, merge_map): def merge_two_polygon(p1, p2): p2 = Polygon(p2) merged = p1.union(p2) return merged merge_map = [disjoint_find(x, merge_map) for x in range(len(merge_map))] merge_map = np.array(merge_map) final_polygons = [] for i in np.unique(merge_map): merge_idx = np.where(merge_map == i)[0] if len(merge_idx) > 0: merged = Polygon(polygons[merge_idx[0]]) for j in range(1, len(merge_idx)): merged = merge_two_polygon(merged, polygons[merge_idx[j]]) x, y = merged.exterior.coords.xy final_polygons.append(np.stack([x, y], axis=1).astype(int)) return final_polygons def get_sample_point(text_mask, num_points, approx_factor, scales=None): # get sample point in contours contours, _ = cv2.findContours(text_mask.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) epsilon = approx_factor * cv2.arcLength(contours[0], True) approx = cv2.approxPolyDP(contours[0], epsilon, True).reshape((-1, 2)) # approx = contours[0].reshape((-1, 2)) if scales is None: ctrl_points = split_edge_seqence(approx, num_points) else: ctrl_points = split_edge_seqence(approx*scales, num_points) ctrl_points = np.array(ctrl_points[:num_points, :]).astype(np.int32) return ctrl_points