#!/usr/bin/env python # -*- coding: utf-8 -*- __author__ = '古溪' import numpy as np from typing import List def functools_reduce(a): # 使用functools內建模块 import functools import operator return functools.reduce(operator.concat, a) def minConnectPath(list_all: List[list]): list_nodo = list_all.copy() res = [] ept = [0, 0] def norm2(a, b): """计算两点之间的距离""" return ((a[0] - b[0]) ** 2 + (a[1] - b[1]) ** 2) ** 0.5 dict00 = {} # 格式 {距离,(起点坐标,终点坐标)} dict11 = {} # 格式 {距离,(起点坐标,终点坐标)} # 放入一个初始值 ept[0] = list_nodo[0] # left end point ept[1] = list_nodo[0] # right end point list_nodo.remove(list_nodo[0]) while list_nodo: for i in list_nodo: # i 待处理的 length0 = norm2(i, ept[0]) # 端点0终点距离 dict00[length0] = [i, ept[0]] length1 = norm2(ept[1], i) # 端点0终点距离 dict11[length1] = [ept[1], i] key0 = min(dict00.keys()) key1 = min(dict11.keys()) if key0 <= key1: ss = dict00[key0][0] ee = dict00[key0][1] res.insert(0, [list_all.index(ss), list_all.index(ee)]) list_nodo.remove(ss) ept[0] = ss else: ss = dict11[key1][0] ee = dict11[key1][1] res.append([list_all.index(ss), list_all.index(ee)]) list_nodo.remove(ee) ept[1] = ee dict00 = {} dict11 = {} path = functools_reduce(res) path = sorted(set(path), key=path.index) # 去重 return res, path def bbox_transfor_inv(radius_map, sin_map, cos_map, score_map, wclip=(2, 8), expend=1.0): xy_text = np.argwhere(score_map > 0) # sort the text boxes via the y axis xy_text = xy_text[np.argsort(xy_text[:, 0])] origin = xy_text radius = radius_map[xy_text[:, 0], xy_text[:, 1], :] sin = sin_map[xy_text[:, 0], xy_text[:, 1]] cos = cos_map[xy_text[:, 0], xy_text[:, 1]] dtx = radius[:, 0] * cos * expend dty = radius[:, 0] * sin * expend ddx = radius[:, 1] * cos * expend ddy = radius[:, 1] * sin * expend topp = origin + np.stack([dty, dtx], axis=-1) botp = origin - np.stack([ddy, ddx], axis=-1) width = (radius[:, 0] + radius[:, 1]) // 3 width = np.clip(width, wclip[0], wclip[1]) top1 = topp - np.stack([width * cos, -width * sin], axis=-1) top2 = topp + np.stack([width * cos, -width * sin], axis=-1) bot1 = botp - np.stack([width * cos, -width * sin], axis=-1) bot2 = botp + np.stack([width * cos, -width * sin], axis=-1) bbox = np.stack([top1, top2, bot2, bot1], axis=1)[:, :, ::-1] bboxs = np.zeros((bbox.shape[0], 9), dtype=np.float32) bboxs[:, :8] = bbox.reshape((-1, 8)) bboxs[:, 8] = score_map[xy_text[:, 0], xy_text[:, 1]] return bboxs