Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,26 +1,71 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
#
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
)
|
| 25 |
|
| 26 |
-
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import os
|
| 3 |
+
import torch
|
| 4 |
+
import spacy
|
| 5 |
+
from spacy import displacy
|
| 6 |
+
|
| 7 |
+
nlp = spacy.load("en_core_web_sm")
|
| 8 |
+
|
| 9 |
+
# Load model directly
|
| 10 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def get_hatespeech_score(text):
|
| 14 |
+
tokenizer = AutoTokenizer.from_pretrained("unhcr/hatespeech-detection")
|
| 15 |
+
model = AutoModelForSequenceClassification.from_pretrained("unhcr/hatespeech-detection")
|
| 16 |
+
|
| 17 |
+
# Tokenize input text
|
| 18 |
+
inputs = tokenizer(text, return_tensors='pt')
|
| 19 |
+
|
| 20 |
+
# Perform inference
|
| 21 |
+
outputs = model(**inputs)
|
| 22 |
+
|
| 23 |
+
# Get predicted label
|
| 24 |
+
predicted_label_idx = torch.argmax(outputs.logits).item()
|
| 25 |
+
predicted_label = model.config.id2label[predicted_label_idx]
|
| 26 |
+
return predicted_label
|
| 27 |
+
|
| 28 |
+
def text_analysis(text):
|
| 29 |
+
label_1 = get_hatespeech_score(text)
|
| 30 |
+
html = '''<!doctype html>
|
| 31 |
+
<html>
|
| 32 |
+
<body>
|
| 33 |
+
<h1>Text Sentiment Analysis</h1>
|
| 34 |
+
<div style=background-color:#d9eee1>
|
| 35 |
+
<h2>Overall Sentiment</h2>
|
| 36 |
+
<p>{}</p>
|
| 37 |
+
</div>
|
| 38 |
+
<div style=background-color:#fff4a3>
|
| 39 |
+
<h2>Adult Content</h2>
|
| 40 |
+
<p>{}</p>
|
| 41 |
+
</div>
|
| 42 |
+
<div style=background-color:#ffc0c7>
|
| 43 |
+
<h2>Hate Speech</h2>
|
| 44 |
+
<p>{}</p>
|
| 45 |
+
</div>
|
| 46 |
+
<div style=background-color:#cfb0b1>
|
| 47 |
+
<h2>Text Summary</h2>
|
| 48 |
+
<p>{}</p>
|
| 49 |
+
</div>
|
| 50 |
+
</body>
|
| 51 |
+
</html>
|
| 52 |
+
'''.format("Alpha", label_1, "Gamma", "Theta")
|
| 53 |
+
|
| 54 |
+
doc = nlp(text)
|
| 55 |
+
pos_tokens = []
|
| 56 |
+
for token in doc:
|
| 57 |
+
pos_tokens.extend([(token.text, token.pos_), (" ", None)])
|
| 58 |
+
|
| 59 |
+
return pos_tokens, html
|
| 60 |
+
|
| 61 |
+
demo = gr.Interface(
|
| 62 |
+
text_analysis,
|
| 63 |
+
gr.Textbox(placeholder="Enter sentence here..."),
|
| 64 |
+
["highlight", "html"],
|
| 65 |
+
examples=[
|
| 66 |
+
["What a beautiful morning for a walk!"],
|
| 67 |
+
["It was the best of times, it was the worst of times."],
|
| 68 |
+
],
|
| 69 |
)
|
| 70 |
|
| 71 |
+
demo.launch()
|