Spaces:
Runtime error
Runtime error
shrirangphadke
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,12 +1,66 @@
|
|
1 |
import gradio as gr
|
2 |
import os
|
|
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
def text_analysis(text):
|
9 |
-
|
|
|
|
|
|
|
|
|
10 |
html = '''<!doctype html>
|
11 |
<html>
|
12 |
<body>
|
@@ -29,8 +83,7 @@ def text_analysis(text):
|
|
29 |
</div>
|
30 |
</body>
|
31 |
</html>
|
32 |
-
'''.format(
|
33 |
-
|
34 |
return html
|
35 |
|
36 |
demo = gr.Interface(
|
|
|
1 |
import gradio as gr
|
2 |
import os
|
3 |
+
import torch
|
4 |
|
5 |
+
# Load model directly
|
6 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
7 |
+
|
8 |
+
|
9 |
+
# Install necessary libraries
|
10 |
+
!pip install transformers
|
11 |
+
!pip install torch
|
12 |
+
!pip install vaderSentiment
|
13 |
+
|
14 |
+
import torch
|
15 |
+
from transformers import RobertaTokenizer, RobertaForSequenceClassification
|
16 |
+
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
|
17 |
+
|
18 |
+
# Load pre-trained RoBERTa model and tokenizer
|
19 |
+
tokenizer = RobertaTokenizer.from_pretrained('roberta-base')
|
20 |
+
model = RobertaForSequenceClassification.from_pretrained('roberta-base')
|
21 |
+
|
22 |
+
# Define a function to analyze text for potential adult content
|
23 |
+
def analyze_adult_content(text):
|
24 |
+
# Tokenize input text
|
25 |
+
inputs = tokenizer(text, return_tensors='pt')
|
26 |
+
|
27 |
+
# Perform inference
|
28 |
+
outputs = model(**inputs)
|
29 |
+
|
30 |
+
# Get predicted label (0: Not Adult Content, 1: Adult Content)
|
31 |
+
predicted_label_idx = torch.argmax(outputs.logits).item()
|
32 |
+
predicted_label = model.config.id2label[predicted_label_idx]
|
33 |
+
|
34 |
+
return predicted_label
|
35 |
+
|
36 |
+
# Define a function to analyze the sentiment of the text using VADER
|
37 |
+
def analyze_sentiment(text):
|
38 |
+
analyzer = SentimentIntensityAnalyzer()
|
39 |
+
sentiment_scores = analyzer.polarity_scores(text)
|
40 |
+
|
41 |
+
# Determine sentiment label based on compound score
|
42 |
+
if sentiment_scores['compound'] >= 0.05:
|
43 |
+
sentiment_label = 'Positive'
|
44 |
+
elif sentiment_scores['compound'] <= -0.05:
|
45 |
+
sentiment_label = 'Negative'
|
46 |
+
else:
|
47 |
+
sentiment_label = 'Neutral'
|
48 |
+
|
49 |
+
return sentiment_label, sentiment_scores
|
50 |
+
|
51 |
+
# Example text
|
52 |
+
text = "I really enjoy watching this movie, it's so entertaining!"
|
53 |
+
|
54 |
+
# Analyze adult content
|
55 |
+
adult_content_label = analyze_adult_content(text)
|
56 |
+
print("Adult Content Label:", adult_content_label)
|
57 |
|
58 |
def text_analysis(text):
|
59 |
+
# Analyze sentiment
|
60 |
+
sentiment_label, sentiment_scores = analyze_sentiment(text)
|
61 |
+
print("Sentiment Label:", sentiment_label)
|
62 |
+
print("Sentiment Scores:", sentiment_scores)
|
63 |
+
|
64 |
html = '''<!doctype html>
|
65 |
<html>
|
66 |
<body>
|
|
|
83 |
</div>
|
84 |
</body>
|
85 |
</html>
|
86 |
+
'''.format(sentiment_label, sentiment_scores, "Gamma", "Theta")
|
|
|
87 |
return html
|
88 |
|
89 |
demo = gr.Interface(
|