shrirangphadke commited on
Commit
de1b425
·
verified ·
1 Parent(s): 76c6334

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +20 -4
app.py CHANGED
@@ -1,7 +1,23 @@
1
  import gradio as gr
 
 
2
 
3
- def greet(name):
4
- return "Hello " + name + "!!"
 
 
 
5
 
6
- iface = gr.Interface(fn=greet, inputs="text", outputs="text")
7
- iface.launch()
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
+ import tensorflow as tf
3
+ import numpy as np
4
 
5
+ # Load the pre-trained model
6
+ model = tf.keras.applications.MobileNetV2()
7
+ labels_path = tf.keras.utils.get_file(
8
+ 'ImageNetLabels.txt', 'https://storage.googleapis.com/download.tensorflow.org/data/ImageNetLabels.txt')
9
+ imagenet_labels = np.array(open(labels_path).read().splitlines())
10
 
11
+ # Define the prediction function
12
+ def classify_image(image):
13
+ image = tf.keras.applications.mobilenet_v2.preprocess_input(image)
14
+ predictions = model.predict(np.expand_dims(image, axis=0))
15
+ return {imagenet_labels[i]: float(predictions[0][i]) for i in range(1000)}
16
+
17
+ # Create a Gradio interface
18
+ inputs = gr.inputs.Image(shape=(224, 224))
19
+ outputs = gr.outputs.Label(num_top_classes=3)
20
+ interface = gr.Interface(fn=classify_image, inputs=inputs, outputs=outputs, capture_session=True)
21
+
22
+ # Launch the interface
23
+ interface.launch()